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Abstract

Rigid body modeling for estimation of aerodynamic derivatives from the flight responses of a
flexible aircraft does not yield the true stability and control parameters of the aircraft, as the
estimated derivatives absorb the aeroelastic effects present in the data. The analytical
expressions for computing the rigid body derivatives from the flight-estimated values require
knowledge of aircraft modal mass and generalized elastic deflections which is not always
available. This paper considers a simplified approach based on quasi-steady representation
of aeroelastic effects to identify the rigid body parameters from the flexible aircraft responses.
Results show that, by combining data at several flight conditions, system identification method
can be applied to separate the rigid body derivatives and the dynamic pressure dependent
quasi-steady effects caused by structural deformation.

Introduction

Parameter estimation from flight data, as applied to
aircraft in the linear flight regime, is currently being used
on routine basis with the assumption that the rigid body
model is valid. Elastic degrees of freedom are, therefore,
absent from the aircraft derivative model used in the
estimation algorithm. However, for the newly developed
highly maneuverable aircraft, and particularly for the large
transport aircraft, the rigid body model will be inadequate
and may yield estimates that are very different from the
true derivative values.

A full order model of an aircraft with rigid body and
elastic degrees of freedom is required to account for the
flexibility effects in aircraft dynamics. Such a model is
necessary to accurately predict the aircraft handling quali-
ties. However, an integrated model of this kind may not
be easy to identify from flight data as it will have too many
parameters and the reliability of the estimates may be
compromised. Ref. [1]  discusses methods of applying
model simplifications to aeroelastic systems. An inte-
grated modeling approach to account for the aeroelastic
effects in aircraft dynamics was suggested in Ref. [2] and
its use for a highly elastic aircraft demonstrated. The
aeroelastic model of Ref. [2] was simplified by Ghosh and
Raisinghani in Ref. [3] and the resulting model, with
reduced number of unknown terms, was used in the iden-

tification of the aeroelastic aircraft. It was shown that the
use of rigid body model in the estimation algorithm pro-
vides derivative values that absorb the flexibility effects
present in the aircraft response and, therefore, differ from
the true derivative values of the aircraft. These estimated
derivatives were referred to as "equivalent derivatives".
An analytical expression for the equivalent derivatives
was obtained by summing the rigid body derivative and
the terms related to the first elastic mode of the aircraft.
Knowing the aircraft modal mass and generalized elastic
deflections, one could use the analytical expression to
compute the rigid body values from the estimated equiva-
lent derivatives. The drawback of the approach, however,
is that the information on the modal mass, in-vacuo fre-
quencies and aircraft elastic deflections required in the
analytical expression is not easily available. The identifi-
cation of true rigid body derivatives from the flight data
of a flexible aircraft is, therefore, of great interest.

One possibility is to use the generalized equations of
motion accounting for the elastic degrees of freedom in
parameter identification [2,4]. However, such models are
very complex and generally consist of a large number of
parameters which may lead to identifiablity problems. A
more practical approach is to model the elastic effects as
quasi-steady influence on the aircraft derivatives. Assum-
ing the rigid and structural frequencies to be well sepa-
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rated, the flexibility effects in the equivalent derivative can
be lumped into a single factor known as flex factor.
Flexibility effects accounted in this manner can be identi-
fied by combining flight maneuvers performed under dif-
ferent dynamic pressure conditions [5,6].

Separate identification of the rigid body derivatives
and flexibility effects can help to better understand the
structural influences on the aerodynamic derivatives. If the
wind tunnel derivatives have no aeroelastic corrections
imposed on them, it would be more appropriate to compare
the estimated rigid body values instead of the equivalent
derivatives with the wind tunnel predictions. On the other
hand, if aeroelastic corrections are made to the wind tunnel
results, these can be verified by identifying the flex factors
from the flight data.

In the present investigations, using the approach sug-
gested in Ref. [5], the work reported in Ref. [3] is extended
by postulating linear model form for the aircraft deriva-
tives to separately estimate the rigid body derivatives and
the flex factors representing the elastic effects. In the
absence of real flight data, simulated data generated for
the example aircraft described in Ref. [2] is used for
analysis. Output error method in time domain [7] is first
applied to identify the derivatives from rigid body model.
It is shown that the estimated derivatives are considerably
different from the true rigid body derivative values.  Next,
estimation of the rigid body derivatives and the flex factors
is carried out by combining aircraft data from four differ-
ent flight conditions. The estimated rigid body derivatives
are found to be in excellent agreement with the true rigid
body parameter values. The flex factors also seem to be
well estimated as indicated by the close match between the
equivalent derivatives computed using the linear model
postulates and the analytical form of Ref. [3].

Mathematical Formulation

Longitudinal short period motion of a flexible aircraft
can be approximated by the following set of differential
equations [2]:
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Eqns. (3) and (4) represent the aerodynamic models for
Cz , the normal force coefficient and Cm , the pitching
moment coefficient. The aerodynamic models include the
rigid body as well as the elastic derivatives (Czα , Cmδ

 ....

as defined in Ref. [2]). η i and η
.

i are the generalized elastic
deflections and their time derivatives. The angle of attack
(α), pitch rate (q) and control input (δ) represent small
perturbation motion variables from the chosen reference
flight conditions. The other parameters in the above equa-
tions include, air density (ρ), total inertial velocity (u),
wing area (S), wing chord (c), aircraft mass (m) and the
moment of inertia about Y-axis (Iy). 

The generalized coordinates satisfy the following
equation [3] :
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where ωi , ξi and Mi are the in-vacuo frequency, modal
damping and modal generalized mass of the ith mode,
respectively.

Assuming the contributions of the generalized elastic
deflections η i to be instantaneous, the terms containing
the time derivatives of elastic deflections in Eq.(5) can be
neglected to give the steady state equation for (ηi)ss :
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Assuming instantaneous elastic deflections helps to
define analytical expressions for computing equivalent
derivative values [3].

The matrix form of Eq. (6) given below is used to
compute the aircraft elastic modes
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where
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The steady state value of the first elastic mode (η1)ss
from Eq. (7) is given by
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In Ref. [3], an analytical expression for the equivalent
derivatives was formulated considering only the first elas-
tic mode of the aircraft. Using the above expression for
(η1)ss  into Eqs.(3) and (4), and neglecting the time deriva-
tive terms for the elastic modes, the coefficients of α, q
and δ were collected to express the equivalent parameters
in the following form [3]:
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A more accurate representation of the equivalent de-
rivatives, however, would be to include all the four elastic
modes in Eq. (11). Rewriting Eq.(7) to compute the air-
craft elastic modes, we get
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Using the values of (η i)ss  from above into Eqs. (3)
and (4), the analytical form for the equivalent derivatives
can be formulated as: 
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The analytical form of Eq.(14) is more accurate than
that given in Ref. [3]. However, to compute the equivalent
or the rigid body derivatives from Eq.(11) or Eq.(14)
would require information about the aircraft elastic deriva-
tives CZηi , Cm ηi , C η i

 η j and Cx
 η j. 

Data Simulation

Flight data for estimation of stability and control de-
rivatives of an aeroelastic aircraft can be generated from a
variety of maneuvers, e.g., pitch stick doublets, rudder
doublets, steady turns and frequency sweeps [8]. The aim
should be to sufficiently excite the aircraft dynamic be-
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havior in longitudinal and lateral axis within the con-
straints placed by safety and operational considerations.

 For the current analysis, due to the non-availability of
real flight data from a flexible aircraft, simulated data for
an example aircraft described in Ref. [2] were generated

at M=0.6 and H=1.5 Km. Details of the aircraft mass,
moment of inertia, geometric characteristics, stability and
control derivatives, and the first four elastic modes for the
baseline configuration C2 and for the more flexible con-
figuration C3, are obtained from Ref. 2 and provided in
Tables-1 to 3 for ready reference. A multistep 3-2-1-1
elevator input with amplitude of 0.05 rad and a step size
of 1 sec was used to generate the data. The simulated
angle-of-attack and pitch rate responses were generated
using Eqs.(1-4) with the elastic modes ηi computed from
Eq.(13). Fig.1 shows the rigid body and aeroelastic re-
sponses for the C3 configuration at Mach 0.6 and alti-
tude1.5 Km.

To separately estimate the rigid body derivatives and
the flex factor representing the elastic effects, simulated
data at three additional dynamic pressure conditions were
generated by varying the altitude while maintaining a
constant Mach (Table-4). The rigid body derivative values

Table-1 : Mass, Geometry and Inertia of example
aircraft [Ref.2]

Geometry
c
_
 = 4.664 m (mean chord)

b = 21.336 m (wing span)
S = 180.79 m2 (planform area)

Λ = 65 deg (sweep angle)
Weight W = 130,642.3 Kg (net weight)

Inertia

Ixx = 1,288,066 Kg-m2

Iyy = 8,677,503 Kg-m2

Izz = 9,626,605 Kg-m2

Ixz = -71,453 Kg-m2

Ixy = Iyz = 0
Modal
generalized
masses

M1 = 248.94 Kg-m2

M2 = 12998.0 Kg-m2

M3 = 1809.3 Kg-m2

M4 = 59111.3 Kg-m2

Table-2 : In-vacuo model frequencies (rad/s) for
example aircraft [Ref.2]

Configura-
tion

Mode 1 Mode 2 Mode 3 Mode 4

C1 (rigid) --- --- --- ---
C2 (base-

line)
12.57 14.07 21.17 22.05

C3 6.29 7.04 10.59 11.03

Table-3 : Rigid Body and elastic derivatives of the example aircraft [Ref.2]

Cz Cm C ηi
Elastic Mode, i

1 2 3 4
Cz0 -0.340 Cm0 -0.252 C0

 ηi 0.00 0.00 0.00 0.00

Czα -2.922 Cmα -1.660 Cα
 ηi -1.49e-2 2.58e-2 1.49e-2 3.35e-2

Czq 14.700 Cmq -34.750 Cq
 ηi -9.49e2 1.16e-2 3.97e-2 2.83e-5

Czδ -0.435 Cmδ -2.578 Cδ
 ηi -1.28e-2 -6.42e-2 2.56e-2 1.47e-4

Czn1 -0.0288 Cmn1 -0.0321 Cη 1

η i 5.85e-5 4.21e-3 2.91e-4 2.21e-5

Cz η2 0.306 Cmn2 -0.025 Cη 2

η i -9.0e-5 -9.22e-2 1.44e-3 -1.32e-4

Cz η3 0.0148 Cmn3 0.0414 Cη 3

η i 3.55e-4 1.97e-3 -3.46e-4 9.68e-6

Cz η4 -0.0140 Cmn4 -0.0183 Cη 4

η i 1.2e-4 3.37e-3 1.44e-4 1.77e-3
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were kept unchanged during data simulation at different
altitudes.

Rigid Body Model Identification

Output error method in time domain was applied to the
simulated data for C2 and C3 configurations at M=0.6 and
H=1.5 Km. Analysis was carried out with varying degrees
of flexibility in the estimation model, e.g., by neglecting
all the four elastic modes (rigid body modeling), by includ-
ing only the first mode, by including the first and second
modes, and by including all the modes. For brevity, results
are presented only for the more flexible C3 configuration.
From Table-5, it is observed that when all the modes are
neglected (rigid body model identification), the estimated
derivatives in column 3 show noticeable change from the
true values listed in column 2. With the inclusion of the
first elastic mode in the estimation model (column 4), there
is a marked improvement in the match between the esti-
mated and the true values. CZq

 and CZδ show some differ-

ences which disappear when the second elastic mode is
also included (column 5). It is evident that the first elastic
mode contributes the maximum to the overall aeroelastic
effects. With all modes included in column 6, the esti-
mated values match exactly with the true values of the
aircraft derivatives.

The  theoretical  values  of the equivalent derivatives
in column 7 and 8 are computed from Eqs.(11) and (14),
respectively. Eq.(14) being more accurate, the values
listed  in column 8, particularly CZδ ,  show excellent

match with  the  estimated  equivalent derivatives listed in
column 3.

From the results presented in Table-5, it is clear that
with all the modes neglected in the estimation model, the
estimated derivatives absorb the flexibility effects present
in the data. The estimation thus does not give the true
derivative values of the aircraft.

A simplified procedure for identifying the rigid body
aircraft derivatives from the measured response of an
aeroelastic aircraft is discussed next. The advantage of this
approach is that, unlike the analytical expression given in
Ref.[3] and Eqs.(11) and (14), it does not require any
apriori information on the aircraft modal mass or elastic
derivatives.

Table-4 : Flight conditions for data generation
Mach = 0.6

Altitude (H) Density (ρ*) Dynamic
Pressure (q)

1.5 Km 1.0 Kg/m3 21455 N/m2

3 Km 0.88 Kg/m3 18013 N/m2
5 Km 0.72 Kg/m3 14093 N/m2

7.5 Km 0.55 Kg/m3 10205 N/m2
* ISA tables used

Fig.1 Aeroelastic and rigid body responses from simulation
[C3 configuration]
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Aircraft Derivatives with Flex Factors

As observed from the results of Table-5, the aeroelastic
effects influencing the aerodynamic derivatives get ab-
sorbed in the estimated values when a rigid body model is
used for identification. As such, what we get from estima-
tion is not the rigid body values but the equivalent deriva-
tives. However, the rigid body and the aeroelastic effects
can be estimated separately by expressing each of the
equivalent derivatives Ci in a linear form, as function of
dynamic pressure q and flex factor ki.

Ci ( q
_
 )  =  Ci ( 1 + ki q

_
 )   =   Ci + Ci ki q

_
(15)

The first term on the right hand side is the rigid body
derivative and the second term is the dynamic pressure
dependent quasi-steady effect due to structural deforma-
tion [4,5]. The flex factor is usually a function of aircraft
in-vacuo frequencies and can be estimated from flight data
of a flexible aircraft using system identification tech-
niques. The complete equations for CZ  and   Cm now
become:
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Cm = Cm0 + Cmα (1 + kmα q
_
 ) . α + Cmq (1 + kmq q

_
 ) . q + Cmδ (1 + kmδ q

_
 ) . δ

(17)

Identification of Aeroelastic Effects

Output error estimation is applied to the simulated data
of the aeroelastic aircraft at four different flight conditions
to separate the dynamic pressure dependent flexibility
effects from the rigid body derivatives. The variations in
the dynamic pressure at different altitudes provide enough
information to estimate the flex factor representing the
quasi steady effects caused by structural deformation.
Results are presented in Table-6 for the more flexible C3
configuration for altitudes 7.5 and 1.5 km. The estimated
rigid body derivatives listed in column 3 are seen to be in
close agreement with the true parameter values in column
2. It is also noticed that, for the estimated flex factor values
in column 4, the equivalent derivatives computed from
Eq.(15) compare very well with the theoretical estimates
from eqn.(14).

Table-5 : Estimated derivative values from models with varying degrees of flexibility
[C3 configuration ; M = 0.6, H = 1.5 Km]

Parameters

(1)

True
values

(2)

All modes
neglected
(estimated
equivalent

derivatives)

(3)

First mode
included

(4)

First and
second 
modes

included

(5)

All modes
included

(6)

Theoretical
values of

equivalent
derivatives

Eq. (11)

(7)

Theoretical
values of

equivalent
derivatives

Eq.(14)

(8)
Czα -2.922 -2.2866

(21.745)*
-3.1562
(8.015)

-2.9156
(0.219)

-2.922
(0)

-2.0391 -2.2865

Czq 14.700 18.3482
(24.818)

12.7098
(13.539)

14.6662
(0.230)

14.700
(0)

20.3240 18.3481

Czδ -0.435 -0.0905
(79.195)

-0.8144
(87.21)

-0.4141
(4.805)

-0.435
(0)

0.3256 -0.0904

Cma -1.660 -0.6532
(60.651)

-1.6225
(2.259)

-1.6422
(1.072)

-1.660
(0)

-0.6759 -0.6532

Cmq -34.750 -28.4003
(18.275)

-34.6848
(0.187)

-34.8446
(0.272)

-34.750
(0)

-28.4815 -28.4004

Cmδ -2.578 -1.6799
(34.84)

-2.4867
(3.541)

-2.5194
(2.273)

-2.578
(0)

-1.7302 -1.6799

* values in parentheses represent the percentage change with respect to true values
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In Fig. 2, the angle-of-attack and pitch rate responses
generated from the model Eqs.(3) and (4) with estimated
rigid body derivatives closely match the measured (simu-
lated) rigid body responses. Also, the model responses
generated with the computed derivatives listed in column
8 of Table-6 show excellent fit to the measured data with
aeroelastic effects.

Concluding Remarks

Estimation of the rigid body derivatives from meas-
ured data of a flexible aircraft is carried out by defining
the aerodynamic derivatives in a linear form with the
quasi-steady aeroelastic effects described through flex
factor. Output error estimation technique in time domain
is applied to combined simulated data at four different
flight conditions. Results show that the changes in dy-
namic pressure in the simulated data provide sufficient
information to separately estimate the rigid body deriva-
tives and the flex factor. The suggested methodology
could be effectively applied to the flight data from large
transport  aircraft  where the flexibility effects are likely
to dominate. The present analysis assumes the rigid body
derivatives at the selected flight conditions to be the same.
Further  work  should  focus  on  modeling  the  depend-
ency of  the  rigid  body  derivatives  on Mach and angle
of attack.
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