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Abstract

The parametric dynamic stability of an asymmetric, rotating sandwich beam and subjected to
an axial pulsating load is investigated. A set of Hills equations are obtained from the
non-dimensional equation of motion by the application of the general Galerkin method. The
zones of parametric instability are obtained using Saito Otomi conditions. The influence of
core-loss factor, geometric parameters and rotation parameters on the zones of instability  are
investigated.

Keywords: parametric dynamic instability, rotating sandwich beam, zones of instability,
simple and combination resonance zones

Nomenclature

Ai (i=1,2,3) = areas of cross section of a 3 layered
    beam, i = 1 for top layer

B = width of beam

b = distance of nearer end of the beam
    from the axis of rotation

b = b/l
c = h1 + 2h2 + h3

Ei (i=1,2,3) = Youngs Modulli, i = 1 for top layer

f
..

j = ∂ 2 fj ⁄ ∂  t
_
  2

G2 = in-phase shear modulus of the
    viscoelastic core

G
∗

 2 = G2 (1+jη), complex shear modulus
    of core

g∗ = g (1+jη), complex shear parameter

g = shear parameter

2hi (i=1,2,3) = thickness of the ith layer
    i= 1 for top layer

h12 = h1/h2

h31 = h3/h1

Ii (i=1,2,3) = second moments of area of cross
    section about a relevant axis,
    i = 1 for top layer

j = √⎯⎯⎯− 1
l = beam length

lh1 = l/h1

m = mass/unit length of beam

Pl = non-dimensional amplitude for the
    dynamic loading

t = time

t = non-dimensional time

u1 (x,t), U1 (x,t) = axial displacement at the middle
    of the top layer of beam

w (x,t) = transverse deflection of beam

w′ = ∂ w
∂ x

w′′ = ∂
2 w

∂ x2

w
__

= wl
..
w = ∂

2 w
__

∂  t
_
 2
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TECHNICAL  NOTE  



w
__

 ′′ = ∂2 w
__

∂  x
_

 2

to = √⎯⎯⎯⎯⎯⎯m l 4

E1 I1 + E3 I3

u1′ = 
∂u1
∂ x

u
_

1′′ = 
∂2 u

_
1

∂  x
_

 2

f = (l + b)2, for beam free x = l

    = l
3

3  + b2 + blat for all other cases

η = core-loss factor

λ0 = rotation parameter

λ1 = rotation parameter

[Φ] = a null matrix

ω = ωt0
ω = frequency of forcing function

ω = non-dimensional forcing frequency

Ω0 = speeds of rotation

Ω0 = non-dimensional rotation parameters

α = 
E1 A1
E3 A3

Introduction

Sandwich constructions with high strength facings and
a light weight core have been very popular in aerospace
applications. Typical sandwich members used varied from
structural panels in aircraft to the helicopter rotor blades.
In general high modulus and light weight characteristics
of the sandwich construction normally have great advan-
tages of high movability, power saving and high strength
in robotics applications. Extensive publications have been
available concerning the design and analysis of sandwich
structure.

The dynamic behaviour of rotating beams is of great
practical interest in the design of steam and gas turbine
blades and helicopter blades. The vibrational behaviour of
a rotating beam, oriented perpendicular to the axis of spin,
was investigated by Bauer and Eidel [2]. It was observed
that the speed of rotation has a very pronounced influence
of the rotating beam and an increase in the speed of

rotation may increase or decrease the natural frequencies
depending on the boundary conditions. Abbas [5] studied
the effect of rotational speed and root flexibilities on the
first order simple resonance zones of a rotating Ti-
moshenkos beam by using the finite element method.
Bauchau and Hong [6] utilized the same method to analyze
the effect of viscous damping on the response and stability
of parametrically excited beams undergoing large deflec-
tions and rotations. Dynamic stability of an ordinary rotat-
ing beam with various boundary conditions was studied
by Kar and Sujata [7]. The same authors [8] also studied
the stability of a rotating, pre-twisted and pre-coned
(which is shown in annexure) cantilever beam. Parametric
instability of a rotating pre-twisted beam subjected to
sinusoidal compressive axial loads was addressed by Tan
et.al [9].

As it has been pointed out by many investigators the
shear deformation of the core plays an important role in
the flexural and dynamic behaviour of a sandwich beam,
therefore, the flexural rigidity in the core and shear defor-
mation of the facings were neglected in many analysis.

In the present study, the parametric instability of a
rotating asymmetric sandwich beam with viscoelastic core
and subjected to a pulsating axial load, is investigated as
it has not been studied till now. The equations of motion
for transverse vibrations of the beam are obtained using
Hamiltons principle. The general Galerkin method is used
to reduce the non-dimensional equations of motion to a set
of coupled Hills equations [1] with complex coefficients.
The regions of instability for simple and combination
resonance are obtained by using the Saito-Otomi condi-
tions [1]. The influence of core loss factor, geometric
parameters and rotation parameters on the parametric
resonance zones is investigated for the pinned-pinned and
fixed-free boundary conditions.

Formulation of the Problem

A viscoelastic sandwich beam of length l, set-off at a
distance b from the axis of rotation (z′-axis) and oriented
along the x-axis, perpendicular to the axis of rotation is
shown in Fig.1. The beam rotates about the vertical z′-axis
at a constant angular velocity Ω0 and is capable of oscil-
lating in the xz plane. It is asymmetric with respect to the
xy plane as layer 1 is not same as layer 3 both geometrically
and materially. Note that some authors might call this a
‘rotating column’ configuration. However, it is also cus-
tomary in the literature to call it a ‘rotating beam’. This is
followed throughout the paper.
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The top layer of the beam is made of an elastic material
of thickness 2h1 and Young modulus E1 and the bottom
layer is made of an elastic material of thickness 2h3 and
Young modulus E3. The core is made of a linearly viscoe-
lastic material with a shear modulus G2

∗ = G2 (1 + jη),
where G2 is the in-phase shear modulus, η is the core loss
factor and j = √⎯⎯⎯ −1 .

A pulsating axial loadP(t) = P0 + P1 cos (ωt) is applied
at the end x′ = b+l of the beam. P0 and P1 are respectively
the static and dynamic load amplitudes, ω is the frequency
of the dynamic load and t is time.

The following assumption are made for deriving the
equations of motion:

• The beam deflection w (x, t), parallel to z axis is small
and is the same at all points of a given cross-section.

• The layers are perfectly bonded so that displacements
are continuous across the interfaces. The elastic face
layers obey the Euler-Bernoulli beam theory.

• The allowance for rotary inertia is neglected while
calculating the kinetic energy of the system.

• Shear deformation of the facings are neglected.

• Damping in the viscoelastic core is predominantly due
to shear. Bending and extensional effects in the core are
neglected.

• The Kerwins assumption [10] is used.

According to the above assumption, E1 A1 U1,x + E3 A3
U3,x = 0

For the system

T = 12 m ∫  
0

 l
 w1t

2   dx + 12 m Ω0
2  ∫  

0

 l
 ⎧
⎨
⎩(b + x)  ∫  

0

 x
 ⎛⎜
⎝

∂w
∂x

⎞
⎟
⎠

2

  dx ⎫
⎬
⎭  dx ,

V = 12  ∫  
0

 l
E1  A1 U1, x

 2  dx + 12  ∫  
0

 l
E3  A 3 U 3, x

 2  dx

+ 12 E1  ∫  
0

 l
I1 

⎛
⎜
⎝

⎜
⎜

∂
2w

∂x2

⎞
⎟
⎠

⎟
⎟

2

 dx + 12 E3  ∫  
0

 l
I3 

⎛
⎜
⎝

⎜
⎜

∂
2w

∂x2

⎞
⎟
⎠

⎟
⎟

2

  dx

+ 12 G2
∗ ∫  

0

 l
A2 v 2

 2 dx + 12 m Ω0
2 ∫  

0

 l
⎧
⎨
⎩(b + x) ∫  

0

 x
(∂w

∂x
)
2 dx⎫

⎬
⎭ dx

where  v2  =  
⎛
⎜
⎝

U1 − U3 − c w, x
2h2

⎞
⎟
⎠

Which is derived according to the Kerwin assumption.

Where T is the kinetic energy of the system. V strain
energy of the system and W is the work done on the system
by the external force.

Using Hamiltons principle

δ  ∫  
t1

 t2
(T − V + W) dt = 0. The  equations of motion and the

associated boundary conditions are obtained as follows :

w
..  + (E1 I1 + E3 I3) 

⎡
⎢
⎣

⎢
⎢

1
m + 

3 Ω 0
 2

2(E1 A1 + E3 A3)
 ⎧

⎨
⎩f − (x + b)

2⎫
⎬
⎭

⎤
⎥
⎦

⎥
⎥
 w′′

− 3 
E1 I1 + E3 I3

E1 A1 + E3 A3
 Ω0

2 (x + b) w′′

+
⎡
⎢
⎣

⎢
⎢
−3 

E
1
 I

1
 + E

3
 I3

2 (E
1
 A

1
 + E

3
 A3)

 Ω
 0
 2

 − 12 Ω
0
2
 ⎧

⎨
⎩
 f − (x + b)

2
 ⎫
⎬
⎭ − 

G
2
∗
 A

2
 c

2

m (2h
2
)
2 + P(t)

m  
⎤
⎥
⎦

⎥
⎥
 w′′

+ 12 Ω 0
 2  (x + b) w′ + 

G 2
∗  A2 c (1 + α)

m (2h2)
2  u1

′  = 0 (1)

u1
′′ −  

G 2
∗  A2 (1 + α)

(2 h 2)
 2 (E1 A1 + α 2 E3 A3)

 ⎧
⎨
⎩(1 + α) u1 − cw′⎫

⎬
⎭ = 0

(2)

The boundary conditions at x = 0 and x =  are :

w′′  =  0     or     w′  =  0 (3)

Fig.1 System configuration
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(E1 I1 + E3 I3) ∂
∂x

 
⎡
⎢
⎣

⎢
⎢

⎧

⎨

⎩

⎪

⎪
1 + 

3 m Ω 0
 2

2(E1 A1 + E3 A3)
 (f − (x + b)

2
)
⎫

⎬

⎭

⎪

⎪
 w′′

⎤
⎥
⎦

⎥
⎥

−  
⎡

⎢

⎣

⎢

⎢

m Ω0
2

2   ⎧
⎨
⎩ f − (x + b)

2⎫
⎬
⎭  +  

G 2
 ∗ A2 c2

(2 h2)
2  + P(t)

⎤

⎥

⎦

⎥

⎥
 w′

+  
G 2

 ∗ A2 c (1 + α)

(2h2)
2  u1 = 0      or ,    w  =  0 (4)

u1
′   =  0        or     u1  =  0 (5)

Introducing the non-dimensional variables x
_
 = x ⁄ l, 

w
__

 = w ⁄ l ,   u
_

1 = u1
 ⁄ l, and t

_
 = t ⁄ to,  where

to  =  √⎯⎯⎯⎯⎯⎯m l 4

E1 I1 + E3 I3
 and simplifying, the following non-

dimensional equations of motion are obtained.

..
w  +  

⎡

⎢

⎣

⎢

⎢
1 + 

λ0
2 (1 + E31 h31

3
)

lh1
 2  (1 + E31 h31)

  ⎧⎨
⎩

f

l 2
 − ( x

_

 + b
_

 )2 ⎫⎬
⎭

⎤

⎥

⎦

⎥

⎥
 w
__

 ′′′′

−  
2 λ 0

 2 (1 + E 31 h 31
 3

)

lh1
 2  (1 + E31 l31)

  ( x
_

 + b
_

 )2 w
__

 ′′′′

+ 
⎡

⎢

⎣

⎢

⎢
 − 

λ
0

2
 (1 + E

31
 h

31

3
)

l
h1

 2
 (1 + E

31
 l

31
)
 − λ

0

2
 ⎧⎨
⎩

f

l
 2 − ( x

_

 + b
_

 )
2
 ⎫⎬
⎭
 − 3g

∗
 
⎛
⎜
⎝
1 + 

h
12

 + h
32

2

⎞
⎟
⎠

2

 + P
_

 (t
_

)

⎤

⎥

⎦

⎥

⎥
 w

_

′′

+ λ0
2 (x

_

 + b
_

 ) w
_

 ′ + 32 g∗ lh1 h12 
⎛
⎜
⎝
1+ 

h12 + h32
2

⎞
⎟
⎠
 (1 + α) u

_

1
 ′ = 0

(6)

u
_

1
 ′′  −  g

∗

4   h12
2  

1 + E 31 h 31
3

1 + α2 E 31 h 31

 (1 + α )

⎡
⎢
⎣

⎛
⎜
⎝
1 + α) u

_
1 − ( 2 (1 + 

h 12 + h 32
2

⎞
⎟
⎠
 ⁄ (lh1 h 12 )) w

__
 ′
⎤
⎥
⎦
  =  0

(7)

The associated non-dimensional boundary conditions
at x = 0 and x = 1 are :

w
__

 ′′  =  0        or        w
__

 ′  =  0 (8)

∂
∂x

  ⎡⎢
⎣

⎛
⎜
⎝
 1 + λ1

2  ⎧⎨
⎩

f

l2
  −  ( x

_

 + b
_

 )2⎫
⎬
⎭

⎞
⎟
⎠
 w

_

 ′′⎤⎥
⎦

− ⎡⎢
⎣
 λ

0
2
 ⎧⎨
⎩

f

l
 2 − ( x

_

 + b
_

 )
2
 ⎫⎬
⎭
 w

_

 ′ − 3g
∗
 
⎛
⎜
⎝
1 + 

h
 12 + h

 32
2

⎞
⎟
⎠

2

 + P
_

 (t
_

)⎤⎥
⎦
 w

_

′

+  32 g∗ lh1 h12 (1 + α) 
⎛
⎜
⎝
1+ 

h 12 + h 32
2

⎞
⎟
⎠
  u
_

1
 ′ = 0

or  w
__

  =  0 (9)

u
_

1
 ′  =  0        or        u

_
1  =  0 (10)

The various parameters etc. are defined as :

E31 = E3/E1,   h31 = h3/h1,   lh1 = l/h1,  h12 = h1/h2,  g* =

g (1+jη) = 
G2

∗ h 21 l h1
 2

E1 (1 + E 31 h 31
 3 )

g being the shear parameter

λ0  =  √⎯⎯⎯⎯⎯⎯m Ω 0
 2 l 4

2 ( E1 I1 + E3 I3 )

λ1  =  √⎯⎯⎯⎯⎯⎯⎯⎯ ( 
3 m Ω 0

 2 l 2

2 ( E1 A1 + E3 A3 )
 )

are rotation parameters.

P
_

 ( t )  =  P
_

0 + P
_

1  cos ( ω
__

 t
_
 ) ,  =  ( P (t ) l 2 )

 (E1 I1 + E3 I3 )

is the non-dimensional load.

Approximate Solution

Approximate solution to the non-dimensional equa-
tions of motion are assumed as
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w
__

 ( x
_
 , t

_
 )  =  ∑ 

i = 1

i = N

  fi ( t
_
 ) wi ( x

_
 ) (11)

u
_

1 ( x
_
 , t

_
 )  =  ∑ 

k = N + 1

k = 2N

  fk ( t
_
 ) u 1k ( x

_
 ) (12)

where fr (r = 1,2, .........., 2N) are the generalized coordi-
nates and wi and u1k are the coordinate functions satisfying
as many boundary conditions as possible [4]. For the
pinned-pinned case, the shape functions chosen are

wi ( x
_
 )  =  sin ( i π x

_
 )

uik ( x
_
 )  =  cos ( k

_

 π x
_
 ) ,     k

_

  =  k − N

For i = 1,2 ..........,  N and k = N+1, N+2, ........, 2N.

For the clamped-free case, the approximating func-
tions are

wi ( x
_
 ) = ( i + 2 ) ( i + 3 ) x

_
 i+1 − 2i ( i + 3 ) x

_
 i+2 + i ( i + 1 ) x

_
 i+2

u1k ( x
_
 ) = x

_
 k

_

 − ⎡⎣ k
_
 ⁄ ( k

_

 + 1 )⎤⎦ x
_

 k
_

 + 1

Substitution of the series solutions in the non-dimen-
sional equations of motion and subsequent application of
the general Galerkin method [4] leads to the following
matrix equations of motion.

[ m ] ⎧
⎨
⎩ f

..

j 
⎫
⎬
⎭ + ⎡

⎣
k11⎤

⎦
 ⎧

⎨
⎩ fj 

⎫
⎬
⎭ + ⎡

⎣
k12⎤

⎦
 ⎧

⎨
⎩ fl 

⎫
⎬
⎭ = ⎧

⎨
⎩ 0 ⎫

⎬
⎭ (13)

⎡
⎣
k22⎤

⎦
 ⎧

⎨
⎩ fl 

⎫
⎬
⎭ + ⎡

⎣
k21⎤

⎦
 ⎧

⎨
⎩ fj 

⎫
⎬
⎭ = ⎧

⎨
⎩ 0 ⎫

⎬
⎭ (14)

where j = 1,2, ....., N and l = N+1, ....., 2N. The various
matrix elements are given by

mi j  =  ∫  
0

 1
 wi wj  d x

_

k11ij = ∫  
0

 1
 ⎡⎢
⎣
 1 + λ1 ⎧⎨

⎩

f

l2
 − ( x

_

 + b
_

 ) 2⎫
⎬
⎭

⎤
⎥
⎦
 wi

′′ wj
′′ d x

_

+ λ 0
 2  ∫  

0

 1
 ⎧⎨
⎩

f

l2
 − ( x

_

 + b
_

 ) 2⎫
⎬
⎭
 wi

′ wj
′ d x

_

+  
⎧

⎨

⎩

⎪

⎪ 3g∗ 
⎛
⎜
⎝
1 + 

h12 + h32
2

⎞
⎟
⎠

2

 − P
_

 ( t
_

 ) 

⎫

⎬

⎭

⎪

⎪ 
⎛
⎜
⎝
∫  

0

 1
wi

′ wj
′ d x

_⎞
⎟
⎠

k12jl = − ( 3 ⁄ 2 ) g∗ lh1 h12 ( 1 + α )

⎛
⎜
⎝
1 + 

h 12 + h 32
2

⎞
⎟
⎠
 
⎛
⎜
⎝
∫  

0

 1
u1l wi

′ d x
_⎞
⎟
⎠

k21li = − ( 3 ⁄ 2 ) g∗ lh1 h12 ( 1 + α )

⎛
⎜
⎝
1 + 

h 12 + h 32
2

⎞
⎟
⎠
 
⎛
⎜
⎝
∫  

0

 1
u1l wi

′ d x
_⎞
⎟
⎠

k22kl  =  3 lh1
 2   

( 1 + α 2 E 31 h 31 )

 ( 1 + E 31 h 31
 3  )

 
⎛
⎜
⎝
∫  

0

 1
u1k

′  u1l
′  d x

_⎞
⎟
⎠

+ ( 3 ⁄ 4 ) g∗ lh1
 2  h12

 2  ( 1 + α )2  
⎛
⎜
⎝
∫  

0

 1
u1k u1l d x

_⎞
⎟
⎠

From Eq.(14) ⎧
⎨
⎩ fl 

⎫
⎬
⎭  =  − ⎡

⎣
k22⎤⎦

 −1   ⎡
⎣
k21⎤

⎦
 ⎧

⎨
⎩ fj 

⎫
⎬
⎭ (15)

where

[k21]  =  [k12]
T

(16)

Substitutionof above in Eq. (13) and subsequent sim-
plification leads to

[ m ] ⎧
⎨
⎩
 f

..

j 
⎫
⎬
⎭ + ⎡⎢

⎣
[k] − P

_

0 [ H ]⎤⎥
⎦
 ⎧

⎨
⎩
 fj 

⎫
⎬
⎭ − P

_

1 cos ( ω
__

 t
_
 ) [ H ] ⎧

⎨
⎩
 f

j
 ⎫
⎬
⎭ = ⎧

⎨
⎩ 0 ⎫

⎬
⎭

(17)

where

[ k ]  =  [ k
_

 ]  −  [ k12 ] [ k22 ] −1 [ k12 ] T

k
_

 ij = ∫  
0

 1 ⎡
⎢
⎣
1 + λ1 ⎧⎨

⎩

f

l2
 − ( x

_

 + b
_

 )2⎫
⎬
⎭

⎤
⎥
⎦
 wi

′′ wj
′′ d x

_

 + λ 0
 2  ∫  

0

 1 ⎧
⎨
⎩

f

l2
 − ( x

_

 + b
_

 )2⎫
⎬
⎭
 wi

′ wj
′ d x

_

+ 3 g∗  
⎛
⎜
⎝
1 + 

h 12 + h 32
2

⎞
⎟
⎠

2

  ∫  
0

 1
wi

′ wj
′ d x

_
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Hij  =  ∫  
0

 1
wi

′ wj
′ d x

_

Regions of Instability 

Let [L] be a modal matrix of [m] −1 ⎡⎣[k] − P
_
0 [ H ]⎤⎦.

Introducing the linear transformation ⎧
⎨
⎩ fj 

⎫
⎬
⎭  =  [ L ] ⎧

⎨
⎩ u ⎫

⎬
⎭,

where ⎧
⎨
⎩ u ⎫

⎬
⎭ is a new set of generalized co-ordinates, Eq.

(17) reduces to a system of N coupled Hill’s Equations
with complex coefficients.

⎧
⎨
⎩ u
..

 n ⎫
⎬
⎭ + ⎡⎢

⎣
ω n

 2⎤
⎥
⎦
 ⎧

⎨
⎩ u n ⎫

⎬
⎭ + P

_

1 cos ω
__

 t
_
  [ B ] ⎧

⎨
⎩ u n ⎫

⎬
⎭  =  ⎧

⎨
⎩ 0 ⎫

⎬
⎭ ,

here P
_

1  =  
P1 l 2

E1 I1 + E3 I3
(18)

where ω n
 2 are the distinct eigenvalues of

[m] −1 ⎡⎣[k] − P
_

0 [ H ]⎤⎦ and are given by

⎡
⎢
⎣
ω n

 2⎤
⎥
⎦
  =  

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

ω 1
 2

0

..

0

    

0

ω 2
 2

..

0

    

..

..

..

..

    

..

..

..

..

    

0

0

..

ω N
 2

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

and [B] = - [L]
-1

 [m]
-1

 [H] [L]

The above equation can be written as :

u.. n + ωn
2 un + P

_

1 cos ω
__

 t
_
  ∑ 
m = 1

N

 bn m u n = 0 ,  n = 1 , 2 … N

(19)

where the complex quantities wn and bnm are given by

ωn  =  ω n, R , + j ω n, 1

bn m  =  b nm, R + jb nm, 1

The boundary of the regions of instability for simple
and combination resonances are obtained using the Saito-
Otomi conditions [1].

Case (A) : Simple Resonance

In this case, the resions of instability are given by

⎪
⎪
⎪

ω
_

2  − ωμ , R

⎪
⎪
⎪
  <  14√⎯⎯⎯⎯⎯⎯⎯⎯⎯  P

__

1
 2 ( bμ  μ , R

2   +  bμ  μ , l
2  )

ωμ , R
  −  16 ωμ , l

2

when damping is present and

⎪
⎪
⎪

ω
_

2  − ωμ , R

⎪
⎪
⎪
  <  14  

⎪
⎪P

_

1 bμ  μ , R
⎪
⎪

ω μ , R

for the undamped case and for m = 1, 2, ........, N.

Case (B) : Combination Resonance of the Sum Type

This type of resonance occurs when μ ≠ v; μ, v = 1, 2
.... N and the regions of instability are given by :

⎪
⎪
⎪

ω
_

2  − 12 ( ωμ , R  +  ωv, R )
⎪
⎪
⎪

<    
ω μ , I + ω v , I

 8 √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ( ω μ , I + ω v, I )

√⎯⎯⎯⎯P
__

 1
 2

 ω
μ , R ω

v, R
 ( b

μ v, R  b
v μ , R

 + b
μ v, I  bv μ , I

 ) − 16ω
 μ ,I ω v, I

for the damped case and

⎪
⎪
⎪

ω
_

2  − 12 ( ωμ , R  +  ωv, R )
⎪
⎪
⎪
 < 

P
_

1

4   √⎯⎯⎯⎯⎯⎯⎯ bμ v, R  bv μ , R
 ωμ , R  ωv, R

for the undamped case.

Case (C) : Combination Resonance of Different Type

This type of resonance occurs when
μ < v , ( μ , v = 1 , 2 .... N ) and the regions of instability
are given by

⎪
⎪
⎪

ω
_

2  − 12 ( ω v, R  −  ω μ , R )
⎪
⎪
⎪

<    
ω μ , I + ω v , I

 8 √⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ ( ω μ , I + ω v, I )
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√⎯⎯⎯⎯P
__

 1
 2

 ω
μ , R ω

v, R
 ( − b

μ v, R  b
v μ , R

 + b
μ v, I

  b
v μ , I

 ) − 16ω
 μ ,I  ω v, I

for the damped case and

⎪
⎪
⎪

ω
_

2  − 12 ( ω v , R  −  ω μ , R )
⎪
⎪
⎪
 < 

P
_

1

4   √⎯⎯⎯⎯⎯⎯⎯ − bμ v, R  bv μ , R
 ωμ , R  ωv, R

for the damped case and

Numerical Results and Discussion

Numerical results were obtained for various values of
the core loss factor η, the non-dimensional geometric
parameters, h31, h12, lh1, b, the modulli ratio G2/E1, the
rotational parameters λ0, λ1 and the shear parameter g. For
relevant values of the parameters, the results of the present
study were compared and found to be in good agreement
with [7]. The following values of parameters are used,
unless otherwise stated : η = 0.05, h31 = h12 = 1.0, lh1 =
40, b = 0.05, G2/E1 = 0.001, g = 0.1, λ0 = 0.05 and λ1 =
01.

Figures 2.1(a, b) to Fig. 2.28(a, b) depict the zones of
parametric resonance for studying the effects of non-di-
mensional parameters on parametric instability of the sys-
tem. In these plots, ωq,R is placed by ωq (q = 1,2,3,4) for
brevity.

Figures 2.1(a, b) to Fig. 2.3(a, b) show the effect of
core loss factor η upon the regions of instability. With the
introduction as well as an increase of core damping, sta-
bility is seen to improve. The instability zones simply
move up without appreciable sideways shift. The combi-
nation resonance zones for the clamped-free case mostly
disappear as n increases to 0.5. The areas of all the unstable
zones decrease, giving rise to an improvement is stability.

Figures 2.4(a, b) to Fig. 2.7(a,b) in conjuction with
Fig.2.2(a,b) study the effect of h12 on parametric stability.
At low values of h12, with an increase in this parameter,
the zones mostly move downwards as well as towards left,
except the zone near ω4 + ω3 in Fig.2.5(b) for the clamped-
free case. This indicates an overall worsening of stability,
since the area of the unstable zones increase as well as
crowd in the low excitation frequency zone. However, for
the higher values of h12, the zones mostly move up and
towards higher value of ω. There is a decrease in the zone

areas and this effect is more pronounced for the simple
resonance zones. Overall stability is seen to improve.
Thus, in this case, stability improves or worsens depend-
ing on the value of h12.

It is apparent from Figs.2.8(a, b) to Fig.2.10(a, b), that
with an increase in lh1, the unstable zones move-up as well
as shift to the right, thereby improving the stability of the
system.

Figures 2.11(a, b) to Fig. 2.13(a, b) depict the depend-
ence of parametric instability on b. An increase in its value
shows that the simple resonance zones remains almost
unaffected. However, for the clamped-free case, the com-
bination resonance zones considerably broaden as well as
move down to some extent. For the pinned-pinned case,
combination resonance zones appear. Thus, system stabil-
ity is worsened.

A study of Figs. 2.14(a, b) to Fig. 2.16(a, b) reveals
that G2/E1, considerably improves parametric stability of
the system with an increase in its value, all the zones move
to higher excitation frequency regions and they also move
up. Some zones even disappear.

The effect of the rotation parameter λ1 is considered in
Figs. 2.17(a, b) to Fig.2.20(a, b). For low values of this
parameter, the resonance zones remains almost unaffected
by an increase in its value. Raising λ1 above 0.1 leads to
the appearance of a narrow band of combination resonance
zones for the pinned-pinned case and thus deteriorates
stability. For the clamped-free case, the combination reso-
nance zones near ω2 + ω1, ω3 + ω1 and ω3 + ω2 broaden
considerably and move downward, thereby worsening
stability. However, the zones near ω4 + ω1, ω4 + ω2 and
ω4 + ω3 move towards right and also move-up, thereby
improving stability to some extent for higher values of ω.

Figures 2.21(a, b) to Fig.2.23(a, b) show the depend-
ence of the shear parameter g on parametric stability of the
system. An increase in g not only shifts the zones upward,
it also shifts them to higher excitation frequency zones,
thereby improving stability over the range considered.

The influence of λ0 on dynamic stability can be seen
from Figs. 2.4(a, b) to Fig. 2.26(a, b). An increase in its
value shifts the zones to the right and also move them up.
This effect is more pronounced for the zones in the lower
excitation frequency zone. Thus, λ0 improves stability.
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Fig.2.1 (a) Effect of η on zones of instability : η = 0

Fig.2.1 (b) Effect of η on zones of instability : η = 0

Fig.2.2 (a) Effect of η on zones of instability : η = 0.05

Fig.2.2 (b) Effect of η on zones of instability : η = 0.05

Fig.2.3 (a) Effect of η on zones of instability : η = 0.5

Fig.2.3 (b) Effect of η on zones of instability : η = 0.5
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Fig.2.4 (a) Effect of h12 on zones of instability : h12 = 0.01

Fig.2.4 (b) Effect of h12 on zones of instability : h12 = 0.01

Fig.2.5 (a) Effect of h12 on zones of instability : h12 = 0.1

Fig.2.5 (b) Effect of h12 on zones of instability : h12 = 0.1

Fig.2.6 (a) Effect of h12 on zones of instability : h12 = 10

Fig.2.6 (b) Effect of h12 on zones of instability : h12 = 10
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Fig.2.7 (a) Effect of h12 on zones of instability : h12 = 100

Fig.2.7 (b) Effect of h12 on zones of instability : h12 = 100

Fig.2.8 (a) Effect of lh1 on zones of instability lh1 = 50

Fig.2.8 (b) Effect of lh1 on zones of instability: lh1 = 50

Fig.2.9 (a) Effect of lh1 on zones of instability: lh1 = 75

Fig.2.9 (b) Effect of lh1 on zones of instability: lh1 = 75
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Fig.2.10 (a) Effect of lh1 on zones of instability: lh1 = 100

Fig.2.10 (b) Effect of lh1 on zones of instability: lh1 = 100

Fig.2.11 (a) Effect of b on zones of instability: b = 0.05

Fig.2.11 (b) Effect of b on zones of instability: b = 0.05

Fig.2.12 (a) Effect of b on zones of instability: b = 0.5

Fig.2.12 (b) Effect of b on zones of instability: b = 0.5
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Fig.2.13 (a) Effect of b on zones of instability: b = 1.0

Fig.2.13 (b) Effect of b on zones of instability: b = 1.0

Fig.2.14 (a) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.0001

Fig.2.14 (b) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.0001

Fig.2.15 (a) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.005

Fig.2.15 (b) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.005
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Fig.2.16 (a) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.1

Fig.2.16 (b) Effect of G2/E1 on zones of instability: 
G2/E1 = 0.1

Fig.2.17 (a) Effect of λ1 on zones of instability: λ1 = 0.001

Fig.2.17 (b) Effect of λ1 on zones of instability: λ1 = 0.001

Fig.2.18 (a) Effect of λ1 on zones of instability: λ1 = 0.01

Fig.2.18 (b) Effect of λ1 on zones of instability: λ1 = 0.01
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Fig.2.19 (a) Effect of λ1 on zones of instability: λ1 = 0.02

Fig.2.19 (b) Effect of λ1 on zones of instability: λ1 = 0.02

Fig.2.20 (a) Effect of λ1 on zones of instability: λ1 = 0.5

Fig.2.20 (b) Effect of λ1 on zones of instability: λ1 = 0.5

Fig.2.21 (a) Effect of g on zones of instability: g = 0.1

Fig.2.21 (b) Effect of g on zones of instability: g = 0.1
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Fig.2.22 (a) Effect of g on zones of instability: g = 1.0

Fig.2.22 (b) Effect of g on zones of instability: g = 1.0

Fig.2.23 (a) Effect of g on zones of instability: g = 10

Fig.2.23 (b) Effect of g on zones of instability: g = 10

Fig.2.24 (a) Effect of λ0 on zones of instability: λ0 = 0.1

Fig.2.24 (b) Effect of λ0 on zones of instability: λ0 = 0.1
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Fig.2.25 (a) Effect of λ0 on zones of instability: λ0 = 1.0

Fig.2.25 (b) Effect of λ0 on zones of instability: λ0 = 1.0

Fig.2.26 (a) Effect of λ0 on zones of instability: λ0 = 10.0

Fig.2.26 (b) Effect of λ0 on zones of instability: λ0 = 10.0

Fig.2.27 (a) Effect of h31 on zones of instability: h31 = 2.0

Fig.2.27 (b) Effect of h31 on zones of instability: h31 = 2.0
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An increase in h31 broadens the zones of stability as
well as pushes them to the left. Thus, it has a detrimental
effect on parametric stability of the system. All this is
evident from Figs.2.27(a, b) to Fig. 2.29(a, b).

Conclusions

Stability of the system is improved with the increase
of core loss factor. Lh1, modulli ratio G2/E1, and shear
parameter of the core. The stability of the system worsens
and improves for low and high values of h12 respectively
and it worsens as b increases. The resonance zones remain
almost unaffected for low values of rotation parameter and
as it raises above 0.1 the stability deteriorates for pinned-
pinned case but for clamped free case, stability worsens
near ω2 + ω1, ω3 + ω1 and ω3 + ω2 and improves near ω4
+ ω1, ω4 + ω2  and ω4 + ω3 for higher values of ω.

In the present work an attempt has been made to
include rotation parameter which affects the zones of
stability.
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Annexure

Configuration of a rotating, pretwisted and preconed
cantilever beam
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