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Abstract

In this paper, vibration analysis of a thin circular disc interacting with a fluid in cylindrical
container is carried out. It has been done systematically by carrying our mathematical
modeling and subsequently validated by ANSYS software. The author has first determined
natural frequencies and mode shapes for a thin circular disc alone and then for fluid contained
by a cylindrical vessel alone. The author had then found natural frequencies and mode shapes
for coupled case of thin circular disc interacting with a fluid contained by the cylindrical
container. The same had been validated by ANSYS software. It is found that natural frequencies
of coupled vibrations are different than that of the frequency of disc or fluid taken separately.
In order to study the correct failure pattern of the coupled vibration system, it, thus, becomes
a necessity to study coupled vibration analysis.

Nomenclature

a = radius of the circular disc
c = speed of sound
D = disc constant, (D = Eh3/12 (1-v2))
E = modulus of elasticity of plate material
f = natural frequency (Hertz)
h = thickness of disc
I0 = principal inertia (mass per unit area), I0 = ρh

I2 = rotary inertia, (I2 = ρh3/12)

In = modified Bessel function of first kind

Jn = bessel function of first kind

Kn = modified Bessel function of second kind

m = number of nodal circles for disc, number of
   nodal diameters in coupled solution

n = number of nodal diameters in case of
   analysis of disc only

p = fluid pressure
q = number of radial wave in the acoustic media
r = radius of the cylinder at a given point
t = time co-ordinate
Wn = deflection of nth mode

W(r,θ) = a function of only r and θ
Yn = bessel function of second kind

z = z-coordinate
ω = natural frequency (radians/sec)

ρl = density of fluid

ρd = density of disc material

w0 = deflection in z-direction

φ = velocity potential

Introduction

Vibration analysis of a machine or a structure is of
great importance in mechanical design. Many harmful
effects like excessive stresses, undesirable noise, loose-
ness of part and partial or complete failure of parts, which
occur due to vibrations, can be predicted by the vibrational
analysis. The frequency range within which it can operate
safely can also be determined and thus one may avoid
damage to the machine/structure. Nearly all solid struc-
tures in real life exist in surface contact with one or more
fluid media, of which the most common are the air and
water. Vibration generated in a solid structure is commu-
nicated to a fluid with which it is in contact via normal
motion of the media interface. Everyday examples include
the generation of audible sound in the air by vibrating
surfaces such as machines, building components and
stringed instruments. The interaction between structural
and fluid systems can alter the free and forced vibration
behaviour of the coupled components from their uncou-
pled forms.
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Warburton [1] has carried out vibration analysis of
rectangular plates backed by a rectangular cavity where
the mode shapes, free and forced frequencies of the vibrat-
ing system were calculated. Bokil and Shirahatti [2] have
studied the sound-structure interaction problems involv-
ing the fluid in a cavity having one flexible wall. In the
paper, they have developed a technique for sound-struc-
ture interaction problems. It has been shown in the paper
that how one can synthesize the modal properties of the
interacting  system from those of the non-interacting fluid
and the structural systems. Scarpa [3] has studied the
parametric sensitivity analysis of coupled acoustic-struc-
tural systems. Here a model for parametric sensitivity
analysis of coupled acoustic structural systems is pre-
sented. Coupled frequencies and modes have been calcu-
lated using Eulerian formulation. Maity and
Bhattacharyya [4] have done a parametric study on fluid-
structure interaction problems. They have studied fluid-
structure system considering the coupled effect of elastic
structure and fluid using Finite Element Method. The
equations of motion of the fluid, considering it as inviscid
and compressible, are expressed in terms of the pressure
variable alone. The solution of the coupled system is
accomplished by solving the two systems separately with
the interaction effects at the fluid-solid interface enforced
by a developed iterative scheme. The parametric study of
the coupled system shows the importance of fluid height
and material property of the structure. Gorman and Ding
[5] have studied the free vibrations of rectangular plates
by using superposition-Galerkin method. Traditional su-
perposition method, used for analyzing the plate vibra-
tions, is very demanding and a difficult task. In this paper,
modified superposition-Galerkin method had been intro-
duced. The modified superposition-Galerkin method used
have eliminated above mentioned problem and also given
excellent results. Airey [6] has studied the vibrations of
circular plates and their relation to Bessel functions having
various boundary conditions. Frequencies for free vibra-
tion for circular disc clamped at its periphery have also
been found by him. Amabili [7] has studied the free
vibrations of a circular cylindrical tank partially filled with
an inviscid and incompressible liquid with a free surface
orthogonal to the tank axis. The tank is modeled by a
simply supported cylindrical shell connected to a simply
supported circular plate. The modes of vibration of the
structure are investigated and the solution is obtained as
an eigenvalues problem by using the Rayleigh-Ritz expan-
sion of the mode shapes. Lee, Yeo and Samoilenko[8]
have studied the effect of the number of nodal diameters
on non-linear interactions in asymmetric vibrations of a
circular plate.

In this paper, vibration analysis of a thin circular disc
clamped at its periphery is first studied. The deflection of
the disc is derived by assuming solution in terms of Fourier
series. For this, a mathematical formulation for a thin
circular disc, clamped at its periphery, is made and its
natural frequencies and mode shapes are determined. This
mathematical formulation is validated on ANSYS 10. A
solid 3-D finite strain 190 element, from element library
of ANSYS 10, is chosen for the analysis. Quantative
comparison of the results of these two formulations for
few nodal diameters is made and found to be in close
agreement. Then, vibration analysis of fluid inside a
closed cylindrical container is studied mathematically by
assuming fluid as a compressible and non-viscous fluid
and container walls as rigid one. It is validated by ANSYS
10 quantatively for few nodal circle and nodal diameter.
For this purpose, FLUID 30 element is chosen for the fluid
and SOLID 95 element for the container walls from the
ANSYS element library. Finally, a coupled vibration
analysis of circular disc interacting with a compressible
and non-viscous fluid is then studied by making a mathe-
matical modeling and the same is validated by ANSYS 10.
This analysis is carried out by selecting SHELL 63 ele-
ment for the disc, FLUID 30 element for the fluid and
SOLID95 element for the container walls from the AN-
SYS element library. For the coupled vibration analysis,
results obtained by ANSYS 10 and modeled are compared
quantatively for few nodal diameter and nodal circle and
found to be in close agreement to each other. It is further
noticed by the author that frequencies for the circular disc
interacting with the fluid contained inside the cylindrical
cavity are different than those obtained for the circular disc
and fluid alone. The difference in these two cases will be
more appreciable and prominent if the length of the cylin-
drical cavity is increased.

Free Vibrations of a Circular Disc

The equation of motion of a thin circular disc in polar
coordinates (Fig.1) under the action of forces and neglect-
ing the effect of pre-stress in the disc is given by [9]

D ∇2 ∇2 w0 + I0 
∂

2 w0

∂t2
 − I2 ∂

2

∂t2
 (∇2 w0)  =  0 (1)

where

∇
2 = ∇ . ∇ = 

⎛
⎜
⎝

⎜
⎜
∂

 2

∂r 2 + 1r  ∂
∂r

 + 1
r 2 ∂

 2

∂ θ 2
⎞
⎟
⎠

⎟
⎟
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In Eq. (1), D is disc constant (= Eh3/(1-v2)), ∇2 is the
Laplace operator and defined above, w0 is the deflection
in z-direction, I0 is the principal inertia (mass per unit area
I0 = ρh)   and I2 is the rotary moment of inertia  (I2 =
ρh3/12).

When the disc is assumed to have free vibration, the
deflection is periodic and can be expressed as:

w0 (r, θ, t )  =  W (r, θ ) cos (ω t ) (2)

where ω is the circular frequency of vibration (rad/s) and
W is a function of r and θ only. Substituting Eq. (2) into
Eq. (1), one gets

D ∇  2 ∇ 2 W  −  I0 ω2 W  +  I2 ω2 ∇2 W  =  0 (3)

The presence of the rotary inertia, I2 creates difficulties
in solving the equation of motion while it contributes little
to the frequencies, especially to the fundamental fre-
quency. Hence, one may neglect the rotary inertia term
safely. Thus, Eq. (3) reduces to

(∇
4 − β4

) W  =  0

or

(∇
2 + β2

) (∇ 2 − β2
) W  =  0

or

∇
 2 W1  +  β2 W1  =  0

∇
 2 W2  +  β2 W2  =  0 (4)

where,

β
 4  =  

I0 ω2

D

We assume solution of Eq. (4) in the form of the general
Fourier series

W (r, θ)  =  ∑ 
n = 0

∞

 Wn(r)  cos  n θ  +  ∑ 
n = 1

∞

 Wn
 ∗
(r)  sin  n θ

(5)

where, Wn (r) and Wn
 ∗ (r)  are the functions of r only

giving the radial mode shape.

Substitution of Eq. (5) into Eq. (4) yield two equations
in the form of Bessesl equations, these equations have the
solution in the following form:

Wn1 = An Jn (βr) + Bn Yn ( β r)     and

Wn2 = Cn In (βr) + Dn Kn ( β r) (6)

where An, Bn, Cn, Dn are the coefficients which are solved
using the boundary conditions and determine the mode
shapes, Jn and Yn are the Bessel functions of first and
second kind respectively, and In and Kn are the modified
Bessel functions of the first and second kind respectively.
Thus, The general solution of Eq. (4) is thus given [10] as:

W (r, θ) = ∑ 
n = 0

∞

 ⎡
⎣
An Jn (β r) + Bn Yn (β r) + Cn In (β r)

+ Dn Kn (β r) ] cos n θ

+ ∑ 
n = 0

∞

  ⎡⎢
⎣
An
∗ Jn (β r) + Bn

∗ Yn (β r) + Cn
∗ In (β r)

+ Dn
∗ Kn (β r) ] sin n θ (7)

where  An
∗, Bn

∗, Cn
∗, Dn

∗  are the coefficients which are
solved using the boundary conditions. For solid circular
plates, the terms involving Yn and Kn, must be discarded
in order to avoid singularity (i.e., infinite values) of deflec-
tions and stresses at the origin, i.e. at r = 0. In addition to
it, if the boundary conditions are symmetrically applied

Fig.1 Polar co-ordinate system for a disc
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about a diameter of the disc then the second expression
containing sin (nθ) is not needed to represent the solution
as it becomes symmetrical with cos (nθ). Then the nth term
of Eq. (7) becomes

Wn (r, θ ) =   ⎡
⎣
An Jn (β r) + Cn In (β r)⎤

⎦
  cos n θ (8)

where n is nodal line and may vary as 0, 1, 2, ..., ∞. A nodal
line is one which has zero deflection (i.e., Wn = 0). For
circular plates, nodal lines are either concentric circles or
diameters. The nodal diameters are determined by
nθ = π ⁄ 2 ,  3π ⁄ 2 , … . The boundary conditions for the
circular disc clamped at its periphery may be given as:

Wn  =  0 and ∂ Wn
 ⁄ ∂r  =  0 at r = a for any θ (9)

Using above boundary conditions in Eq. (8), one ob-
tain

⎡

⎢

⎣

⎢

⎢

 Jn (λ)        In (λ)

 J ′n (λ)      I ′n (λ)

⎤

⎥

⎦

⎥

⎥
  
⎧

⎨

⎩

⎪

⎪

An

Cn

⎫

⎬

⎭

⎪

⎪
   =   

⎧

⎨

⎩

⎪

⎪

 0

 0

⎫

⎬

⎭

⎪

⎪
(10)

where, λ = β a and the prime denotes differentiation with
respect to the argument, β r. For nontrivial solution, one
can set the determinant of the coefficient matrix of Eq. (10)
to zero, i.e.

⎪

⎪

⎪

⎪

⎪

 Jn (λ)        In (λ)

 J ′n (λ)      I ′n (λ)

⎪

⎪

⎪

⎪

⎪
  =   

⎧

⎨

⎩

⎪

⎪

 0

 0

⎫

⎬

⎭

⎪

⎪
(11)

where, J and I are Bessel functions and modified Bessel
functions of first kind respectively. Expanding the deter-
minant and using the recursion relations given as

λ  Jn′ (λ)  =  n Jn (λ )  −  λ  Jn+1 (λ) ;

λ In′ (λ)  =  n In (λ )  +  λ In+1 (λ) (12)

One can find, from Eq. (11), Frequency equation for
the problem as

Jn (λ) In+1 (λ)  +  In (λ) Jn+1 (λ)  =  0 (13)

or

Jn+1 (λ)

Jn (λ)
  +  

In+1 (λ)

In (λ)
  =  0 (14)

The roots, λ , of Eq. (14) are used to determine the
frequencies (ω) of the circular  disc as

ω
2  =  (D β 4

)
I0

  =  (D λ4
)

a 4 I0

(15)

The mode shape associated with λ is determined using
Eq. (11). From Eqs. (6) and (9), one gets

An
Cn

   =   −  
In (λ)

Jn (λ)
(16)

where λ is the solution (i.e., root) of Eq. (14). Therefore,
the radial mode shape of vibration from Eq. (8) is given
by the following relation:

Wn (r)  =  An Jn (β r)  +  Cn In (β r) (17)

And  using Eq. (16) in Eq. (17), and putting Cn = 1 one
gets

Wn (r)  =  − 
In (λ)

Jn (λ)
  Jn (β r)  +  In (β r) where λ = β a

(18)

Eq. (18) gives the modes of free vibration of a circular
plate clamped at its periphery.

Free Vibrations of Fluid inside the Cylindrical
Container

The non-viscous and compressible fluid inside a cylin-
drical duct is schematically shown in the Fig.2. The 3-D
wave equation in r, θ and z coordinate systems is given
[11] as

∂
2
φ

∂r2   +  1r  ∂φ
∂ r

  +  1

r 2 ∂
2
φ

∂ θ2  +  ∂
2
φ

∂z 2  =  1
c2 ∂

2
φ

∂ t 2
(19)

where, φ is the velocity potential, c is the speed of the
sound, r is the radius of cylinder at any plane and t is time.
The velocity potential is finite and is single valued inside
the cylinder and vanishes on its boundary. These observa-
tions are expressed by the fact that velocity potential (φ)
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satisfies the following three pairs of boundary conditions
for all time periods.

φ = 0 at z = 0 and φ = at z = L;

φ = finite at r = 0 and φ = 0 at r = a;

φ(φ = 0)  =  φ(φ = 2 π)  and  φ′(φ = 0)  =    φ′(φ = 2 π) (20)

The wave equation is solved by separation of variables
method. It consists of finding those solutions which have
the product form given as

φ  =  R (r)  Θ (θ)  Z (z)  T (t) (21)

where R(r) is a function of r only, Θ(θ) is a function of θ
only, Z(z) is a function of z only and T(t) is a function of t
only. Introducing it into the wave equation, Eq. (19), and
dividing it by the product of these four factors, one gets

1
R 1r  d

dr r dR
dr   +  1

r2 1
Θ

 d
 2
Θ

d θ 2  +  1Z d
 2Z

dz2   −  1

c2 1T d
 2T

dt2
  =  0

(22)

By bringing z-term to the right hand side, the resulting
equality holds for all r, θ, z and t. Thus, the right hand must
be independent of r, θ and t, while the left hand side must
be independent of z. But the two sides are equal. Thus, the
quantity (function) must be independent of r, θ, t and z,
i.e., it must be some constant. Let it is k2. So, Z(z) statisfies
the following 

−  1Z d
 2Z

d z2   =  k2 (23)

Next isolate the Θ-term and by the analogous argu-
ment, one obtain

1

r2 1
Θ

 d
 2
Θ

d θ 2  =  k2  or  1
Θ

 d
 2
Θ

d θ 2  =  − m 2

where  − m2  =  r 2 k 2 (24)

Its solution is of the form

Θ  (θ)  =  C1 ei m θ + D1 e− i m θ = C1 (cos m θ + i sin m θ)

+  D1 (cos m θ − i sin m θ) (25)

where C1 and D1 are constants. Similarly, one may obtain

1
R   ⎡⎢

⎣

1
r  d

dr r dR
dr   −  m

 2

r 2  R⎤⎥
⎦
  =  − λ2 (26)

or   r 2 R ′′  +  rR ′  +  (λ2 r 2 − m 2
)  R  =  0 (27)

Its solution is of the form

R (r)  =  A Jn (λ r)  +  B Yn(λ r) (28)

Here m2 and λ2 are called separation constants. Now,
isolating the T terms as follows :

1

− c2 1T d
 2 T

dt2
  =  k2 or

d 2T

dt2
  +  ω2 T  =  0  where ω2  =  c2 k2 (29)

Its solution is in the form of

T (t)  =  G eiωt  =  H e− i ω t (30)

The problem is symmetrically loaded so any one term
of cos mθ or sin mθ is sufficient to represent the solution
of wave equation. So one can safely replace the term T(t)
by eiωt and Θ(θ) by (cos mθ). So Eq. (21) becomes

φ  =  Z(z) . R(r) .  (cos m θ) eiωt (31)

where m is the nodal circle and can vary as 0, 1, 2, ....
Separation of variables for z, using Eq. (23), yields

−  Z′′Z   =  k2 (32)

where Z"  =  d
 2Z

d z2

Eq. (32), yields

Z(z)  =  A  cosh  kz  +  B  sinh  kz (33)

The physical boundary condition ∂ φ
∂ z

 |
z = 0

  =  0  implies

that B = 0; therefore

Z (z)  =  A  cosh  k z (34)
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From Eq. (27), one can get

R ′′  +  1r  R ′  +  
⎡
⎢
⎣

⎢
⎢

ω
2

c2  + k2 − m
 2

r 2

⎤
⎥
⎦

⎥
⎥
  R  =  0 (35)

Let λ  =  
⎛
⎜
⎝
k2 + ω

2

c2
⎞
⎟
⎠

1 ⁄ 2

, then above Eq. reduces to

R (r)  =  Cl Jm (λ r)  +  Dl Ym (λ r) (36)

where Cl and Dl are constants. Dl = 0 since R must be finite
when r → 0 (because Ym → ∞ as r → 0). Thus one can
write

R  =  Cl Jm (β r
_
) (37)

where r = r/a and β = a λ . Since there is no radial
component of fluid velocity at r = 1,  for  a given value of
m there is a set of roots  β  =  βms(s = 0, 1, 2, 3, ...), where
J′m (β) = 0. Solving J′m (β) = 0, one gets the value of β.
This equation has an infinite number of possible solutions
βms. To facilitate calculations, let π β′ms = βms. Hence,
βms  represent the roots of the equation as given by

J ′m (πβ′ms)  =  0 (38)

Finally, the natural frequency [11] (Hertz) of the fluid
can be found as

fm, s, a  =  c2  
⎡
⎢
⎣

⎢
⎢ 
⎛
⎜
⎝

β′ms
a

⎞
⎟
⎠

2

  +  ⎡⎢
⎣

q
L
⎤
⎥
⎦

2 ⎤
⎥
⎦

⎥
⎥

 1 ⁄ 2

(39)

where c is the acoustic speed in the undisturbed fluid, and
the subscripts m, s and q are the wave numbers related to
the modes of the acoustic oscillations in the closed cylin-
drical cavity. Here m is the number of nodal diameters, s
is the number of nodal circles and q is the number of radial
wave in the acoustic media. Table-1 shows the relationship
between the Wave numbers and the Acoustical oscillation
modes for a closed cylindrical cavity. From Eqs. (31), (34)
and (37), one gets 

φ = ∑ 
m = 0

+ ∞

   ∑ 
q = 1

+ ∞

 φm, q (z, r
_
, θ , t) = ∑ 

m = 0

+ ∞

   ∑ 
q = 1

+ ∞

Dm, q  (cosh km, q)

⎡
⎢
⎣
Jm (βm, q r)  (cos m θ) e iωt⎤

⎥
⎦

(40)

where Dm,q are unknown constants given by the condition
at z = L.

Coupled Vibration Analysis of Disc Interacting
with a Fluid

A circular cylindrical container of radius, a, and
height, L, is filled with a fluid (compressible and non-vis-
cous) of density ρl. The container bottom and its side walls
are considered as solid and rigid, while the free fluid
surface is covered with an elastic thin circular plate of
radius a.

It follows from Eq. (40) that for a fixed integer value
of m (where m is the number of nodal diameters), the
velocity potential of fluid is given [12] as

φ
m
 (z, θ, r, t) = ∑ 

q = 1

+ ∞

D
m, q

 cosh (km, q z) J
m
 (βm, q ra) × cos (mθ) eiωt

(41)

and for the forced vibrations of the disc it is possible to
write

wm (r, θ, t)  =  Wm (r) cos (m θ) e iωt (42)

where  Wm (r)  =  ∑ 
z = 1

+ ∞

 W0, m, s Wm, s (r) and W0, m, s are un-

known constants. Here subscripts m denotes the number
of nodal diameter and s denotes the nodal circle. Now

Table-1 : Relationship between the wave numbers
and the acoustical oscillation modes for a closed cy-

lindrical cavity
Wave number

Mode of oscillation
m s q
m 0 0 Tangential
0 s 0 Radial
0 0 q Longitudinal (axial)
m s q Combination
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velocity in the z-direction found from the velocity poten-
tial Eq. (41) and by Eq. (42) are equated. This is known as
impermeability condition. Here velocities are equated be-
cause at the interface where the fluid comes into contact
with the circular disc, both the disc and the fluid will have
the same velocity. Equating velocities, as obtained by Eqs.
(33) and (34), one gets

∂φm
∂ z

 
|z = L

  =  ∂w
∂ t

(43)

It gives

∑ 
q =1

+ ∞

Dm, q km, q sinh (km, q l) Jm 
⎛
⎜
⎝

βm, q r
a

⎞
⎟
⎠
  =  i ω Wm (r)

(44)

Using Orthogonality relationship [10], one gets

∫  
0

 a
r Jm  ⎛⎜

⎝
βm, q1 ra

⎞
⎟
⎠
 Jm  ⎛⎜

⎝
βm, q2 ra

⎞
⎟
⎠
  dr  =  0     for  q1 ≠ q2

(45)

∫  
0

 a
r Jm

 2  ⎛⎜
⎝
βm, q ra

⎞
⎟
⎠
 dr

=  
⎛
⎜
⎝
a2

2
⎞
⎟
⎠
  
⎛
⎜
⎝

⎜
⎜
1 − m2

βm, q
2

⎞
⎟
⎠

⎟
⎟
  Jm

 2 (βm, q)   for  q1 = q2 = q (46)

Multiplication of Eq. (44) by ⎡⎢
⎣
 rJm ⎛

⎝
βm,q  ra⎞⎠

⎤
⎥
⎦
  and inte-

grating over the range from 0 to a gives 

Dm, q =    
iω∫  

0

a
r Wm(r) Jm ⎛⎜

⎝
βm, q ra

⎞
⎟
⎠
 dr

km, q sinh (km,q l) Jm
 2  
⎛
⎜
⎝
βm, q a

 2

2
⎞
⎟
⎠
  
⎛
⎜
⎝

⎜
⎜
1 − m 2

β m,q
 2

⎞
⎟
⎠

⎟
⎟

(47)

On substituting above in Eq. (41) yields

and pressure of the fluid inside cylindrical container as

pm (r, θ, z, t)|
z = L

 =  − ρf 
∂φm
∂ t

 
|
z = L

=  ρf  L ω2  2

a2  cos (m θ) e iωt  ∑ 
q = 1

+ ∞

   pm, q (r) (49)

where

pm, q (r) = 
coth (km,q L)

(km,q)
 

Jm(βm,q r ⁄ a)

( 1 − m2 ⁄ βm,q
 2  ) Jm

 2 (βm,q )

×   ∫  
0

a
r Wm (r) Jm ⎛⎜

⎝
βm,q ra

⎞
⎟
⎠
 dr (50)

Substituting Wm(r) into the integrals of Eq. (50), one gets

∫  
0

a
r Wm, s (r) Jm

 ⎛⎜
⎝
βm,q ra

⎞
⎟
⎠
 dr = a2 J

m
 (β m, q ) I

m
 (βm, s a) Gm, s, q

(51)

where

Gm, s, q  =  
βm, s a

β m, q
 2  + β m, s

 2  a2  
I′m (βm, s a)

Im (βm, s a)

−  
β m, s a

β m, q
 2  − β m, s

 2  a2  
J ′m (β m, s a)

J m (βm, s a)

Therefore the pressure [Eq.(49)] of fluid inside cylin-
drical container becomes

φm (z, θ, r, t) |
z = L

 = i ωL ∑ 
q = 1

∞

     

⎡

⎢

⎣

⎢
⎢
⎢

⎢
⎢
⎢

 
coth (km,q L)

(km,q L)
     

Jm(βm,q r ⁄ a)

(a2 ⁄ 2) ( 1 − m2 ⁄ βm,q
 2  ) Jm

 2 (βm,q )
     ×

 cos(m θ) eiωt ∫  
0

a
r Wm (r) Jm (βm,q ra) dr

⎤

⎥

⎦

⎥
⎥
⎥

⎥
⎥
⎥

(48)

NOVEMBER 2008 VIBRATION ANALYSIS OF THIN CIRCULAR DISC 261



pm (r, θ, t)|
z = L

 = 2 (ρf  L) ω
2 cos (m θ) eiωt

×   ∑ 
q = 1

+ ∞

   
coth (km, q L)

(km, q L)
  ×  

Jm(βm, q r ⁄ a)

( 1 − m2 ⁄ βm, q
 2  ) Jm (βm, q )

×  ∑ 
s = 1

+ ∞

 Wo, m, s  Im (βm, s a) Gm, s, q (52)

where Gm,s,q is defined in Eq. (51) above. The pressure
value obtained by Eq. (52) has to be supplied as boundary
conditions for disc vibrating at the surface of the fluid. For
the disc in vacuo, the equation of motion of the disc is
given by

∇
 4 Wm, s (r)  =  

ρd
D0

 ωm, s
2  Wm, s (r) (53)

and the equation of motion, describing the vibrating disc
interacting with the fluid, is given [13] as

∇
 4 w  =  − 

ρd
D0

  ∂
 2 w
∂ t2

  +  p
D |z = L

Substitutions of disc deflection i.e., wm (r, θ, t) =

cos (m θ) eiωt ∑ 
s = 1

+ ∞

 W0, m, s  Wm, s (r) and pm at z = L in the

above equation yields

ρd
D0

   ∑ 
s = 1

+ ∞

 W0, m, s (ω m, s
 2  − ω 2

) Wm, s (r)  =  
pm
D  |z = L (54)

After substitution of Wm,s from Eq. (17) and pm from Eq.
(52) in Eq. (54), one gets

∑ 
s = 1

+ ∞

 
⎛
⎜
⎝

⎜
⎜

ρd
D0

⎞
⎟
⎠

⎟
⎟
 (ωm, s

 2  − ω 2
)  W0, m, s

×   
⎡
⎢
⎣

⎢
⎢
 − 

Im (ξm, s)

Jm (ξm, s)
 Jm ⎛⎜

⎝
ξm, s 

r
a
⎞
⎟
⎠
 + Im ⎛⎜

⎝
ξm, s 

r
a
⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥

=  − 2
⎛
⎜
⎝

⎜
⎜

ρf l
D0 h

⎞
⎟
⎠

⎟
⎟
  ω2 ∑ 

s = 1

+ ∞

W0, m, s Im (ξm, s) ∑ 
q = 1

+ ∞

Cm, q (ω) Gm, s, q

×  
Jm (βm, q r ⁄ a)

( 1 − m2 ⁄ βm, q
 2  ) Jm (βm, q )

(55)

where, Cm, q (ω) = − 
coth (km, q l)
(km, q l)

. Now multiplying Eq.

(55) with ⎡
⎣
r Jm (βm, q r ⁄ a)⎤

⎦
 and then integrating over the

interval (0, a), one gets

∑ 
s = 1

+ ∞

 (ωm, s
 2  − ω 2

)  Wo, m, s  ∫  
0

 a
r Jm (βm, q r ⁄ a)

×   
⎡
⎢
⎣

⎢
⎢
 − 

Im (ξm, s)

Jm (ξm, s)
 Jm ⎛⎜

⎝
ξm, s 

r
a
⎞
⎟
⎠
 + Im ⎛⎜

⎝
ξm, s 

r
a
⎞
⎟
⎠

⎤
⎥
⎦

⎥
⎥
  dr

=  − 2 ρ ω2  ∑ 
s = 1

+ ∞

W0, m, s Im (ξm, s) ∑ 
q = 1

+ ∞

Cm, q (ω) Gm, s, q

×  1

( 1 − m2 ⁄ βm, q
 2  ) Jm (βm, q )

×  ∫  
0

 a
r Jm (βm, q r ⁄ a) Jm (βm, q r ⁄ a) dr (56)

where ρ = ρf L ⁄ ρd h. Finally performing the integration of
above equation, one gets,

∑ 
s = 1

+ ∞

 (ωm, s
 2  − ω 2

) Wo, m, s Im (βm, s a) Gm, s ,q Jm (βm, q)

=  − ρ ω 2 ∑ 
s = 1

+ ∞

 Wo, m, s Im (βm, s a) Cm, q (ω) Gm, s, q Jm (βm, q)

which after rearrangement gives

∑ 
s = 1

+ ∞

 Wo, m, s Im (βm, s a) [(ωm, s
 2  − ω 2

) Gm, s ,q Jm (βm, q)
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+ ρ ω 2 Cm, q (ω) Gm, s, q Jm (βm, q)]  =  0 (57)

Expressing Eq. (57), in matrix form for fixed m and s
(as 1, 2, ... n), gives us the values of different frequencies
by equating its determinant to zero. When the matrix, thus,
formed is of the order of 3 or more the solution of mathe-
matical formulation becomes very complex so ANSYS
have been used to calculate the coupled frequencies.

To get the solution of mathematical formulations pre-
sented above, radius of the circular disc is taken as 0.038m,
thickness of disc as 0.00038m, length of cylinder as
0.081m, density of fluid inside the cylinder as 1.2 Kg/m3,
density of circular disc as 7800 kg/m3 and sonic velocity
as 343 m/s.

ANSYS Modeling and Results

The finite element modeling of a thin circular disc
clamped at its periphery is made on ANSYS-10[14]. For
this purpose, a solid-shell 3-D finite strain 190 element is
used for the finite element modeling. The frequencies of
the disc as obtained by ANSYS-10 are shown in Table-2.
Theoretical frequencies of the disc have also been obtained
from frequency equation i.e. Eq. (14) for few nodal diame-

ter (m) and nodal circle (n). For these nodal diameter and
nodal circle, quantitative comparison of the frequencies as
obtained by the above two manner is shown in Table-3.
The Table-3 shows that the frequencies are in close agree-
ment to each other.

The finite element modelling for the fluid alone is then
carried out on ANSYS-10. For this, FLUID 30 element is
chosen for the fluid and SOLID 95 element for the cylinder
walls containing the fluid. The frequencies of fluid inside
a closed cylindrical container are obtained by ANSYS and
are shown in Table-4. Theoretical frequencies of the fluid
alone have also been obtained from frequency equation i.e.
Eq. (39) for few nodal diameter (m), nodal circle (n) and
number of radial wave in the acoustic media (q). For these
nodal solution, quantitative comparison of the frequencies
as obtained by the above two methods is shown in Table-5.
It is clear from Table-5 that results of ANSYS modelling
are in close agreement with the theoretical one.

Finally, the finite element modeling of complete prob-
lem of disc interacting with the fluid contained inside the
cylindrical container is analyzed by ANSYS -10. For this
purpose, fluid is assumed to be compressible and non-vis-
cous fluid. SHELL63 element is selected for disc and
thickness of the disc is taken as 0.00038m. FLUID 30
element is selected for fluid and SOLID 95 element for
container walls from the ANSYS element library. The
frequencies of the circular disc interacting with a fluid
contained inside the cylindrical container as obtain by
ANSYS-10 is shown in Table-6. Quantitative comparison
of the ANSYS results with the theoretical values, as ob-
tained by Eq. (57), is made in Table-7 for few nodal
solutions. The Table-7 shows that the percentage error in

Table-2 : Frequencies of circular disc clamped at
its periphery by ANSYS-10

Set No. Frequency (Hz)
1 671.88
2 1398.5
3 1398.6
4 2294.6
5 2294.7
6 2616.7
7 3358.0
8 3358.1
9 4003.9
10 4004.3
11 4585.3
12 4585.6
13 5569.4
14 5570.4
15 5866.6

Table-3 : Quantative comparison of frequencies of
theoretical and ANSYS methods for circular disc

alone for few nodal solutions
S.

No.
m, n Theoretical

Frequency (Hz)
ANSYS-10

Frequency (Hz)
1 0, 0 671.50 671.88
2 1, 0 1398.00 1398.5
3 2, 0 2292.50 2294.6
4 0, 1 2615.71 2616.7
5 3, 0 3358.30 3358.0
6 1, 1 4001.00 4003.9
7 0, 2 5859.83 5866.6
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these two results is within 2.85 % and are in close agree-
ments.

A qualitative nodal solution, for circular disc alone
which is clamped at its outer periphery, obtained by AN-
SYS-10, is then shown in Fig.3 for various frequencies.
The Fig.4 shows the qualitative nodal solutions of a circu-
lar disc interacting with a fluid contained inside the cylin-
drical vessel, as obtained by ANSYS-10 for various
frequencies.

Table-6 : Frequencies of vibration of a circular disc
interacting with a fluid contained inside the cylin-

drical container by ANSYS-10
Set No. Frequency (Hz)

1 671.39
2 1393.0
3 1395.2
4 2120.6
5 2281.1
6 2286.1
7 2604.7
8 2654.4
9 2654.4
10 3333.5
11 3341.2
12 3397.6
13 3599.2
14 3964.8
15 3980.4
16 4268.0
17 4545.0
18 4550.0
19 5036.8
20 5518.5

Table-4 : Frequencies of fluid alone inside a closed
cylindrical container by ANSYS-10 assuming con-

tainer has rigid walls
Set. No. Frequency (Hz)

1 2120.8
2 3397.7
3 3401.5
4 4262.3
5 4902.3
6 4909.8
7 5021.4
8 5024.0
9 5979.6
10 6146.3
11 6280.3
12 6445.2
13 6483.6
14 7027.2
15 7370.6

Table-5 : Quantative comparison of frequencies as
obtained by Theoretical and ANSYS methods for

fluid alone for few nodal solutions
S.
No

m, n, q Theoretical
Frequency (Hz)

ANSYS
Frequency

(Hz)

% 
Error

1 0, 0, 1 2116.50 2120.8 0.2
2 0, 0, 3 3386.54 3397.7 0.3
3 1, 0, 0 4236.60 4262.3 0.6
4 2, 0, 0 4874.30 4902.3 0.6
5 3, 0, 0 6034.09 6146.3 1.8

Table-7 : Quantative comparison of frequencies obtained
by theoretical and ANSYS methods for circular disc in-
teracting with fluid inside cylindrical container for few
nodal solutions. Here m is the number of nodal diame-

ters, s is the number of nodal circles and q is the number
of radial wave in the acoustic media

S.
No.

m, n, q Theoretical
Frequency (Hz)

ANSYS
Frequency

(Hz)

%
Error

1 0, 0, 0 675.1 671.39 0.5
2 1, 0, 0 1393.4 1393.0 0.02
3 2, 0, 0 2294 2286.1 0.34
4 0, 0, 1 2131.1 2120.6 0.49
5 0, 1, 0 2615 2604.7 0.39
6 1, 0, 0 2644.2 2654.4 0.38
7 1, 0, 1 3387 3397.6 0.31
8 2, 0, 0 4390 4268.0 2.85
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Discussions and Conclusions

Vibration analysis of a thin circular disc interacting
with a fluid in cylindrical container is carried out in this
paper. For this, theoretical modeling of a circular disc
clamped at its periphery, fluid contained in a cylindrical
vessel and the circular disc interacting with the fluid
contained by a cylindrical vessel is presented. The above

Fig.2 Cylindrical acoustic cavity

Fig.3a Plots for the deformed shapes (Nodal solutions) at
frequency = 671.879 Hz

Fig.3b Plots for the deformed shapes (Nodal solutions) at
frequency = 1399 Hz

Fig.3c Plots for the deformed shapes (Nodal solutions) at
frequency = 2617 Hz

Fig.3d Plots for the deformed shapes (Nodal solutions) at
frequency = 3358 Hz
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Fig.3e Plots for the deformed shapes (Nodal solutions) at
frequency = 4004 Hz

Fig.3f Plots for the deformed shapes (Nodal solutions) at
frequency = 4585 Hz

Fig.3g Plots for the deformed shapes (Nodal solutions) at
frequency = 5570 Hz

Fig.3h Plots for the deformed shapes (Nodal solutions) at
frequency = 5870 Hz

Fig.4a Nodal solutions for the coupled case at 671.39 Hz

Fig.4b Nodal solutions for the coupled case at 1393 Hz
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Fig.4c Nodal solutions for the coupled case at 2121 Hz

Fig.4d Nodal solutions for the coupled case at 2281 Hz

Fig.4e Nodal solutions for the coupled case at 2605 Hz

Fig.4f Nodal solutions for the coupled case at 3333 Hz

Fig.4g Nodal solutions for the coupled case at 3965 Hz

Fig.4g Nodal solutions for the coupled case at 4545 Hz
(two different views
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three theoretical modeling is compared quantatively for
few nodal solutions by ANSYS-10 modeling. The results
are found to be in close agreement for the two methods.
Qualitative nodal solutions are, then, presented for the
circular disc alone and the circular disc interacting with
the fluid in side a cylindrical vessel as obtained by AN-
SYS-10.

For a circular disc interacting with fluid inside cylin-
drical container, It has been observed that for length of
0.081m, only few values of coupled analysis show strong
fluid-structure results, while the other frequencies ob-
tained are either very near to the disc frequencies or fluid
frequencies alone. But if one increase the length of the
cylinder, it is possible to show that more and more fre-
quencies have strong fluid-structure interaction effects. So
by studying the coupled vibration analysis, one can predict
the natural frequencies within which the coupled system
(consisting of the disc and the fluid) will vibrate safely and
so it can help designer in knowing the frequencies at which
this system might come in resonance with some other
machinery with which it might be attached or coming in
contact.
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