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Abstract

This paper describes a novel technique for near real time estimation of non-linear aerodynamic
coefficient dependencies on one or more independent variables. It is important from the point
of view of updating the aerodynamic database of six DOF simulations subsequent to flight test.
The technique is validated using the six DOF simulated data. The novelty about this technique
is the combined utilization of linear interpolation and recursive least squares estimation to
capture nonlinear functional dependencies that makes it suitable for multidimensional near
real time estimation. The technique is preceded by data compatibility check using Extended
Kalman filter.
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Nomenclature

CX = total coefficient of axial force

CZ = total coefficient of normal force

Cm = total coefficient of pitching moment

AX = x body axis acceleration at CG (m/s2)

AZ = z body axis acceleration at CG (m/s2)

M = mass in kg

FtX = x body axis engine thrust (Newton)

FtZ = z body axis engine thrust (Newton)

q = dynamic pressure (Pascal)

S = wing area (m2)

c = mean aerodynamic chord (m)

b = wing span (m)

p
.

= roll acceleration (rad/sec2)

q
.

= pitch acceleration (rad/sec2)

r
.

= yaw acceleration (rad/sec2)

p = roll rate (rad/sec)

q = pitch rate (rad/sec)

r = yaw rate (rad/sec)

u = forward velocity (m/s)

v = lateral velocity (m/s)

w = vertical velocity (m/s)

φ = roll angle (rad)

θ = pitch angle (rad)

ψ = yaw angle (rad)

h = altitude (m)

IX = x body axis moment of inertia (Newton-m2)

IY = y body axis moment of inertia (Newton-m2)

IZ = z body axis moment of inertia (Newton-m2)

IZX = zx body axis moment of inertia (Newton-m2)

Dxeng = displacement of engine from CG along
    x body axis (meters)

Dzeng = displacement of engine from CG along
    z body axis (meters)

α = angle of attack (deg)

V = total velocity (m/sec)

δe = elevator control surface (deg)

β = angle of side slip (deg)

CZq = CZ derivative with respect to pitch rate

CZδe = CZ derivative with respect to elevator deflection
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Cmq = Cm derivative with respect to pitch rate

Cmδe = Cm derivative with respect to elevator deflection

θ̂ = vector of unknown parameters to be estimated

X = regressor

Y = output vector

P = correlation matrix

Introduction

Aerodynamic data of an aircraft is updated as a part of
flight-testing if significant differences are found between
predicted response and measured data. Numerous tech-
niques are available for flight parameter estimation [1,2].
The dynamic model of the aircraft is estimated using
response of the aircraft and control inputs. Most of these
techniques are applicable for the estimation of linear
mathematical models of flight dynamics. Estimation of
linear models captures only the average trend of flight
characteristics. Many aircraft do not posses linear charac-
teristics. There exists nonlinear dependence of the aerody-
namic coefficients with respect to the variables like Mach
number, angle of attack, sideslip, angular rates and control
effectors. In the case of modern combat aircraft these
nonlinearities can be present even before the stall angle of
attack is reached [3-4]. It is important to capture this
nonlinear dependence during the update process. The
mathematical model is validated by comparing outputs
obtained  from  the  mathematical model against flight
data.

The wind tunnel model of an aircraft can be quite
comprehensive. This is constructed by representing the
nonlinear variations in the form of table lookup. It is
possible to capture the nonlinear characteristics with suf-
ficient fidelity by choosing break points at proper loca-
tions and using linear interpolation in between. In this
paper, it is shown that this formulation can be the basis for
parameter estimation.

Multiple adaptive regression splines are capable of
modeling nonlinear aerodynamic coefficient depend-
encies [5,6]. Spline modeling calls for the stepwise regres-
sion approach for adequate model structure determination.
Subsequent to the spline modeling, the Expectation Maxi-
mization (EM) algorithm [5] or Filter Error Method
(FEM) [6] can be used for the estimation of spline coeffi-
cients. The EM technique and FEM are time consuming
as they involve nonlinear optimization and are suitable for
accurate offline estimation purposes. Wind tunnel predic-

tion through incremental coefficients obtained from flight
data analysis is also a well-known offline approach [7].
Postulating suitable derivative models in an analytical
form will also aid identification of an aerodynamic data-
base [8]. This is again an accurate offline method. The aim
of this paper is to propose a technique for near real time
non-linear estimation purposes. The term non-linear esti-
mation in this paper implies estimating the functional
dependencies without actually postulating a fixed struc-
ture model. The table look-up model that is similar to that
of a wind-tunnel database is updated directly. As already
mentioned, the wind tunnel table look-up mathematical
model captures the underlying nonlinearity in most of the
flight regimes using interpolation techniques with suitable
break points. This is particularly true for a high perform-
ance fighter aircraft. The aerodynamics is generally non-
linear in flight regimes beyond stall. In addition, near stall,
the aerodynamics can exhibit hysteresis (more than one
value for one independent variable). Therefore, the aero-
dynamics beyond stall is not easily captured in the form
of functional dependence as seen in [9]. This method can
be applied where there exists a functional dependence of
the aerodynamic forces and moments on the flight vari-
ables.

Linear least squares method is an efficient tool for the
estimation of flight derivatives. The recursive version of
least squares has been shown to be computationally effi-
cient and can be used in real time [10]. In this paper an
estimation technique is proposed using RLS, which di-
rectly updates the aerodynamic coefficient dependency on
one or more independent variables represented in table
look-up form [11]. The proposed technique offers the
following advantages:

• Near real time estimation of nonlinear aerodynamic
coefficients

• A priori Model structure determination is not required

• It does not involve non-linear optimization

• The break points for the estimation can be chosen
similar to that of wind tunnel break points, as they are
optimal

• Easy to handle multiple dimensions

• Possible to apply for unstable aircraft

The technique is validated using 6 DOF simulated data
of a light transport aircraft. Additive process noise of
standard deviation 2 m/sec is added to the simulated data.

238 JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES VOL.60, No.4



Bias and scale factor errors are added to the data to
simulate realistic scenario. The whole estimation proce-
dure consists of two passes. The first pass is the data
compatibility check using EKF. The choice of EKF as
against EM/FEM is to avoid nonlinear optimization for
near real time usage of the technique. The second pass is
the proposed nonlinear estimation using RLS.

Postulated Model

To prove the validity of technique, longitudinal aero-
dynamics is considered in this paper. The longitudinal
non-linear aerodynamic coefficients are computed from
the measured variables by inverting the 6 DOF equations
as follows:

CX  =  ( AX  M − FtX)
 ⁄ ( q

_

 S ) (1)

CZ  =  ( AZ  M − FtZ ) ⁄ ( q
_

 S ) (2)

Cm  =  ⎛⎜
⎝
 ( q
.
 IY − ( IZ − IX ) rp − ( r 2 − p2 ) IZX ⎞⎟

⎠

−  ⎛
⎝
 FtX Dzeng − FtZ Dxeng ⎞

⎠
 ⁄ q
_
 S c
_

(3)

After computing the coefficients, the coefficients are
modeled as functions of state and control variables. The
longitudinal force and moment coefficients are postulated
as non-linear models as follows:

CX  =  CX (α ) (4)

CZ  =  CZ (α )  +  CZq q c
_

 ⁄ 2 V  +  CZδe δe (5)

Cm  =  Cm (α )  +  Cmq q c
_

 ⁄ 2 V  +  Cmδe δe (6)

where CX (α) , CZ (α) and Cm (α) represents the func-
tional variation of coefficients with angle of attack.
CZq , CZδe , Cmq and Cmδe are linear derivatives.

Linear Interpolation

The aerodynamic nonlinearities are commonly repre-
sented by linear table look-up method. Suitable choice of
breakpoints is necessary to capture the variation in the
coefficient. The usual independent variables are angle of
attack, sideslip and control surface deflection. The rate
dependence becomes important for rotary balance data at
high rotation rates. For a typical aircraft it is common to
have joint dependence on more than one variable leading

to a multi-dimensional table look-up. The estimation pro-
cedure is motivated by linear interpolation.

Consider  the  one-dimensional  interpolation formu-
lae:

y (x)  =  y1  +  
( y2 − y1)

( x2 − x1 )
 . ( x − x1)

=  
( x2 − x)

( x2 − x1 )
 . y1 

( x − x1)

( x2 − x1)
 . y 2

=  Wl (x) . y1 + Wr (x) . y2 (7)

x ∈  ⎡
⎣
 x1 , x2⎤⎦

This equation gives the function value between two
breakpoints  (x1 , y1) and (x2 , y2). We have recast the
formulae in the form of a left weight Wl (x) multiplying
the left hand value of the function y1 and a right weight
Wr (x) multiplying the right hand value y2. It is noted that
the weights are themselves functions of the independent
variable x. The value of the function y (x) is a linear
combination of the weights and the values at breakpoints.
The advantage of expressing in this manner is that the
linear interpolation can be generalized to multiple dimen-
sions easily. Consider the two dimensional interpolation
formulae (Fig. 1).

y (θ1 , θ2)  =  Wl1 (θ1) . Wl2 (θ2) . yi, j

+  Wl1 (θ1) . Wr2 (θ2) . yi, j + 1

+  Wr1 (θ1) . Wl2 (θ2) . yi, + 1, j

+  Wr1 (θ1) . Wr2 (θ2) . yi, + 1, j +1 (8)

θ1 ∈  ⎡
⎣
 θ1i, θ1 (i + 1)⎤⎦

 , θ2 ∈  ⎡
⎣
 θ2j, θ2 ( j + 1)⎤⎦

The weights in the Eq. (8) are computed separately for
each dimension in an identical manner to the one-dimen-
sional interpolation in Eq. (7). To compute the value of the
function, the four possible combinations of the two one-
dimensional weights are formed and multiplied with the
corresponding breakpoint value of the two-dimensional
function. This process can be followed for any higher
dimensional table look-up with linear interpolation. In the
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context of the estimation problem posed in this paper, the
values of dependent variable are the unknowns (yij). It is
noted that the value of the function at an intermediate point
y (θ 1, θ 2) is a linear function of the weights and the
unknowns yij. This is true in general for the multi-dimen-
sional linear interpolation scheme as well.

Estimation Procedure

As already mentioned, the whole estimation is per-
formed in two passes over the data. The flow diagram is
given in Fig.2.

Pass 1: Data Compatibility using EKF

In general, the data used in estimation are affected by
noise, biases and scale factors. The data compatibility
check ensures that the measurements used in the estima-
tion process are consistent and error free. This pass is also
called as flight path reconstruction. The kinematic model
for the data compatibility check is derived from the trans-
lational equations of motion of an aircraft. In flight path
reconstruction, basically state estimation is performed us-
ing the kinematic model accounting for the systematic
errors. The complete set of non-linear system of equations
with the inclusion of biases are written as follows:

u
.
 =  − (q

m
 − Δq) w + (rm − Δr) v − g sin θ + a

x
CG

          u (t
0
) = u

0

v
.
 =  − (r

m
 − Δr) u + (pm − Δp) v + g cos θ sin φ + a

y
CG

   v (t
0
) = v

0

w
.
 =  − (p

m
 − Δ p) v + (q

m
 − Δ q) u + g cos θ cos φ + az

CG
   w (t

0
) = w0

φ
.
 = (p

m
 − Δ p) + (q

m
 − Δ q) sin φ tan θ

+  (r
m

 − Δ r) cos φ tan θ                                              φ (t
0
) = φ

 0

θ
.

 = (q
m

 − Δ q) cos φ − (r
m

 − Δ r) sin φ                       θ (t
0
) = θ

0

ψ
.
 = (q

m
 − Δ q) sin φ sec θ + (r

m
 − Δ r) cos φ sec θ   ψ (t

0
) = ψ0

h
.

 = u sin θ − v cos θ sin φ − w cos θ cos φ                  h (t0) = h
0

(9)

The subscript ‘m’ indicates measured quantity. The ‘Δ’
prefix represents bias present in the measured quantity.

The measurement equations are given by :

Vm  =  √⎯⎯⎯⎯⎯⎯⎯⎯ u2 + v2 + w2

α m = Kα  tan−1 ⎛⎜
⎝

w
u
⎞
⎟
⎠
 + Δ α

β m = Kβ  sin−1  ⎛⎜
⎝

v

√⎯⎯⎯⎯⎯⎯⎯⎯ u 2 + v 2 + w 2    ⎞⎟
⎠
  +  Δ β

φm  =  φ

θm  =  θ

Fig.1 Two-dimensional interpolation grid

Fig.2 Flow diagram of estimation process
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ψm  =  ψ

hm  =  h
(10)

The quantities Kα and K β  represent scale factor errors
in the measurement of angle of attack and sideslip respec-
tively. More details on FPR can be found from [1]. Con-
sider the following nonlinear system of equations:

x
.
 (t)  =  f [ x (t), ui (t)]  +  Fwn (t)

y (t)  =  g [ x (t), ui (t)]

z (n)  =  y (n) + Gvn (n) (11)

where f and g are system functions of the state and
observation equations and F and G are the corresponding
noise distribution matrices. The algorithmic steps of EKF
for nonlinear state estimation are given as follows [1-2]:

Prediction

x~ (n +1)  =  x~ (n) + ∫  
t
n

 t
n + 1  f  [ x̂ (t), u

_
i (t) ]  dt

P
~
 (n + 1)  ≈  Φ (n +1)  P̂ (n) Φ T (n + 1) + Δ t F F T (12)

where

Φ (n +1) = e A(n) Δt  ≈  I + A (n) Δ t + A 2 (n) Δ t2 ⁄ 2 ! + ....

A (n)  =  
∂f [ x (t), ui (t) ]

∂x
 |

x = x̂ (n)
(13)

Correction

y~ (n)  =  g [ x~ (n), ui (n) ]

K (n)  =  P
~
 (n) CT [ C P

~
 CT + R ] −1

x~ (n)  =  x~ (n) + K (n) [ z (n) − y~ (n) ]

P̂ (n) = [ I − K (n) C ] P
~
 (n) [ I − K (n) C ]T + K (n) R KT (n)

(14)

where

C (n)  =  
∂g [ x (t), ui (t) ]

∂x
 |

x = x~ (n)
(15)

where u
_

i denotes the average or interpolated values of the
inputs between the time points n and n+1, ~ the predicted
variables, ∧ the updated variables, K the Kalman gain
matrix and R the measurement noise covariance matrix.

Pass 2: Non-linear Estimation using RLS

The estimation problem for model structure given in
Eq. (4-6) consists of determining the unknown functions
CX (α), CZ (α), and Cm (α ). The estimation of unknown
(possibly nonlinear) functions CX (α), CZ (α) and
Cm (α ) is simplified by treating the function values at
selected breakpoints as the unknowns and assuming linear
interpolation for values between the breakpoints. For ex-
ample, if ‘n’ equidistant breakpoints (α1, α2, .... , αn) in
the independent variable α are chosen and the correspond-
ing function values for CX (α) are represented as
x1, x2, .... , xn .

θ̂  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

x1

x2

.

.

xn

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

(16)

Consider thge kth data point of the time response.
Using the linear interpolation formulae, the force equation
given in Eq. (4) can be written as:

CX  =  ⎡
⎣
0   .   .   Wlk   Wrk   .   0   0   0 ⎤

⎦
 θ̂  +  ek (17)

where Wlk and Wrk are the weights obtained from the
interpolation scheme using Eq. (7) for the ith and i+1th

breakpoints (i.e., for α lying between ith and i+1th break-
points). For e.g., assume there are 20 break points in angle
of attack (-1, 0, 1, 2...., 18) and kth data point has value of
angle of attack = 10.4234. Clearly, this value falls between
breakpoints 10 and 11. This means that the left index is 12
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and the right index is 13. The left weight is computed as
Wlk = (11-10.4234)/(11-10) = 0.5766  as per Eq. (7).

Similarly, the right weight is computed as Wrk = 1-0.5766
= 0.4234. These weights are placed in the 12 and 13th

columns of the regressor. Remaining entries in the regres-
sor are zeros.

The above equation can be extended in the vector form
for all ‘n’ data points and can be written as:

Y  =  X  θ̂ + e (18)

In general, the breakpoints need not be same for mul-
tiple unknown functions and they need not be equidistant.
The technique allows the user to choose these depending
on the problem at hand. The complete regressor X has to
be formed considering all the data points.The unknown
θ̂  is  estimated  using the well known least squares solu-
tion.

θ̂  =  (X T X) −1   (X T Y) (19)

The regressor for the estimation of Cm (α) and Cz (α)
remain the same as above because the calculation of
weights depend only on angle of attack. In addition to the
estimation of Cm (α) , the estimation of Cmq , Cmδe is
required to model Cm . Similarly to model CZ , estimation
of CZq , CZδe is required. This can simply be accomplished
by adding pitch rate signal and elevator control surface
input signal as additional columns in the regressor.

Using the matrix inversion lemma, the recursive form
of Eq. (19) can be obtained which results in Recursive
Least Squares (RLS) estimation. The unknown parameter
vector θ̂ can be estimated recursively using the following
steps:

Initialize the algorithm by setting P0 = δ −1 I , where
δ is a small positive constant and

θ̂0  =  0 (20)

For each instant of time, n = 1, 2, ... , N compute :

πn  =  Xn Pn − 1

κn  =  1 + π n  Xn
 T

kn  =  Pn − 1  Xn
 T ⁄ κ n

α n  =  Yn −  (θ̂n − 1 X n
 T ) T

θ̂n  =  θ̂n − 1  +  (kn α n ) T

P ′n − 1  =  k n π n

Pn  =  (Pn − 1 − P ′n −1 ) (21)

where P is the correlation matrix. The advantage of recur-
sive estimation lies in avoiding the matrix inversion and
numerical ill conditioning. Also it may be used to perform
real time estimation. The starting value for θ̂0 is 0 as
equation error estimation techniques do not require them
strictly. The correlation matrix is fixed at 10,000*I. where,
I is identity matrix [1].

Results

The data for the estimation is obtained from the six
DOF simulation software of a light transport aircraft. As
already mentioned, the concept of the paper is proven for
longitudinal estimation. Process noise of standard devia-
tion 2m/sec is added as turbulence to the simulated data.
Further, scale factor and bias is introduced in angle of
attack, bias is added to pitch rate, forward acceleration and
normal acceleration. The data affected by errors are proc-
essed in the data compatibility check. The estimated states
in the data compatibility check are given as follows:

⎡
⎣
u , v , w , φ , θ , ψ , Kα , Δ α , Δ  q , Δ ax , Δ az⎤⎦

The estimated states are compared with their true
values as well as the signal containing noise and system-
atic errors in Fig. 3-12.

The effect of process noise is seen in lateral velocity,
as its magnitude is low. It can be noticed that the flight
path reconstruction using EKF removed all the systematic
errors. The estimated bias and scale factor errors are
compared with true values in Table-1. Since, the longitu-
dinal estimation is addressed in the results, the magnitude
of sideslip is negligible in the longitudinal maneuver, the
scale factor K β in Eq. (10) is assumed to be 0 and hence
not estimated.

After the removal of systematic errors from the re-
sponses, the longitudinal force and moment coefficients
are computed using Eq. (1, 2, 3). Subsequent to the com-
putation of coefficients, the nonlinear estimation is per-
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Fig.3 Forward velocity from FPR compared with true value

Fig.4 Lateral velocity from FPR compared with true value

Fig.5 Vertical velocity from FPR compared with true value

Fig.6 Roll angle from FPR compared with true value

Fig.7 Pitch angle from FPR compared with true value

Fig.8 Yaw angle from FPR compared with true value
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formed as a function of angle of attack using Eq. (4, 5, 6).
The estimated coefficients as a function of angle of attack
are compared with wind tunnel coefficients and plotted in
Fig.13. It can be noted that all coefficients exhibit non-
linearity for angle of attack greater than 13 degrees.

Once the estimation is over the estimated model needs
to be validated. To accomplish this, the wind-tunnel data-
base is replaced with the estimated database. Again the
longitudinal simulation is performed for the same flight
condition as before and the responses are compared. The
comparison is given in Figs.14-16. The comparison is
satisfactory.

Multi-dimensional Estimation

Having proved the technique for estimation of coeffi-
cients as a function of single variable, we also proceed to
prove the capability of the technique for multidimensional
estimation by considering the following model postulate
for longitudinal flight data :

α
.
  =  f1 (α , q , δ e)

q
.
  =  f2 (α , q , δ e) (22)

Table-1 : Estimated systematic errors compared
with true values

Sl. No. State True Value Estimated Value
1 Δ α 0.2 0.2035

2 Kα 2.0 1.9914

3 Δ q 0.3 0.2998

4 Δ az 1.0 1.0001

5 Δ ax 1.0 0.9475

Fig.9 Corrected angle of attack compared with
true and measured values

Fig.10 Corrected pitch rate compared with
true and measured values

Fig.11 Corrected normal acceleration compared with
true and measured values

Fig.12 Corrected forward acceleration compared with
true and measured values
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It is noted that Eq. (22) contains functions which
depend simultaneously on three independent variables.For
the estimation problem, the measurements of α, q and δe
were taken from short period flight data excited with large
amplitude input. ‘n’ break points of  α, ‘m’ break points
of q and ‘1’ break points of δe were chosen to estimate f1
and f2. At any point of time one sample of α, q and δe are
available. The left and right indices for each of these
variables for interpolation are determined. Hence there
will be six indices at a point of time corresponding to the
three variables. Hence, using the six indices six weights
are computed using Eq. (7). Eight (23) combinations of
weights can be formed and the index in the regressor for
those combinations can be found as follows:

index = i + (j-1)*n+ (k-1)*n*m (23)

where n is the number of break points in  α, m is the
number of break points in q, i denotes the left/right index
of α for interpolation, j denotes the left/right index of q for
interpolation, k denotes the left/right index of δe for inter-
polation.

The functions f1 and f2 were estimated as 3 dimen-
sional look up tables. It is noted that the data points
required for the estimation increases in direct proportion
with number of dimensions (data points covering l*m*n
combinations in this case) . In this paper, one segment of
the flight data is used for the estimation, merely to show
the extendibility of the technique to multi-dimensions. In
practical applications, several segments have to be con-
catenated to cover almost all combinations of break points.
The plots for nonlinear functional variations are not
shown, as it is difficult to cover all combinations of break

Fig.13 Estimated coefficients as a function of angle of attack

Fig.14 Response matches between wind-tunnel database
and estimated database-longitudinal

Fig.15 Match of longitudinal coefficients

Fig.16 Match of longitudinal accelerations
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points with one flight segment data. However, the meas-
ured responses were compared with simulated responses
in Fig.17 according to the postulated model given in Eq.
(22). In addition to this, a linear estimation is carried out
by postulating a second order short period state space
model. This additional exercise brought out the impor-
tance of estimating the underlying nonlinearity in the time
response, which the linear estimation could not capture as
shown in Fig.17.

Conclusion

A novel technique is proposed to perform near real
time estimation of nonlinear aerodynamics. Although, the
present aircraft example required only one-dimensional
estimation, the technique is tested for multidimensional
estimation and the results are also reported. The multidi-
mensional formulation is found to be much simpler for
implementation as against multidimensional splines. The
linear interpolation in conjunction with RLS does not
involve any nonlinear optimization to capture the non-
linearity that makes it suitable for near real time estima-
tion.
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