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Abstract

Finite element formulation for the thermal buckling of moderately thick rectangular function-
ally graded material (FGM) plates is developed. This is based on the first order shear
deformation theory (FSDT). One dimensional heat conduction equation is employed to
represent the non-uniform temperature distribution across thickness of the FGM plate.
Material properties of the plate are considered to be function of temperature. It is assumed
that the material properties of the FGM plate vary as a power function along the plate
thickness. Finite element code is developed and computation of critical thermal buckling
temperature of the FGM plates is carried out. This computer program is validated with the
results available in the literature. Further, finite element analysis is carried out to determine
the thermal buckling of rectangular FGM plates with circular cutout. Uniform and non
uniform temperature distributions across the plate thickness are considered. Further, effects
of (i) plate aspect ratio, (ii) plate thickness to side ratio, (iii) power index ’k’ (iv) size of the
cutout and (v) the three different boundary conditions on the critical buckling temperature are
studied.

Keywords:  finite element analysis, thermal buckling, functionally graded material, tempera-
ture dependent,  plate with cutout

Nomenclature

a, b, h = length, width and thickness of the
   rectangular plate

z = thickness coordinate variable
d = diameter of the plate cutout
k = volume fraction index
Vc = volume fraction of ceramic

Vm = volume fraction of metal

Ef, Em, Ec = Young’s moduli of FGM plate, metal and
    ceramic 

vf, vm, vc = Poisson’s ratios of FGM plate, metal and
    ceramic

αf, αm, αc = thermal expansion coefficients of FGM
    plate, metal and ceramic

Kf, Km, Kc = thermal conductivities of FGM plate,
    metal and ceramic

Pf = FGM material property (Ef, vf, Kf) dependent
    on temperature

Pc = material property of ceramic

Pm = material property of metal

P-1, P1, = temperature coefficients of constituent
P2, P3     materials

T = temperature
Tc, Tm = specified temperature at ceramic and metal

    surfaces, respectively
ΔT = temperature difference from a stress free state
u0, v0, w0 = mid-plane displacements of plate

Φx, Φy = midplane rotations

εx
0 , εy

0 , = midplane strains in respective planes

εxy
0

κ x , κ y , = midplane curvatures of plate in respective
κ xy    planes

π = total potential energy of the plate
π1 = strain energy of the plate

π2 = word done by in plane loading of the plate

Aij, Bij, = stiffness coefficients of composite material
Dij
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⎡
⎣
Ks

e⎤
⎦

= element stiffness matrix

⎡
⎣
Kg

e⎤
⎦

= element geometric matrix

⎡
⎣
Fi

 e⎤
⎦

= element forcing function

⎡
⎣
K0⎤

⎦
= global stiffness matrix

⎡
⎣
Kg⎤

⎦
= global geometric matrix

Introduction

Functionally Graded Materials (FGMs) are those in
which the volume fractions of two or more materials are
gradually varied as a function of position along certain
dimension of the structure to obtain desired distribution of
material properties. For example, the compositions are
varied from a ceramic rich surface to a metal rich surface
across thickness of a plate with a pre-defined volume
fractions and power index of these two materials. The
ceramic material provides the high temperature resistance
due to its low thermal conductivity and the metal material
prevents the fracture due to the thermal stresses and pro-
vides adequate stiffness to the FGM structure. The gradual
change of material properties could be tailored as per the
required applications. Thus, there is optimum usage of
both constituent materials. The continuous change in the
microstructure of functionally graded materials (FGMs)
distinguishes them from the fibrereinforced laminated
composite materials, which have a mismatch of mechani-
cal properties across an interface of two discrete materials
bonded together. As a result, the constituents of the fibre-
matrix composites are prone to debonding at extremely
high thermal loading. Additional problems include the
presence of the residual stresses due to the difference in
coefficients of thermal expansion of the fibre and matrix
in the fibrereinforced-plastic (FRP) composites. FGMs
are free from these problems. By gradually varying the
volume fraction of the constituent materials in the FGMs,
stronger and tougher materials are achieved. These prop-
erties make the functionally graded materials to be pre-
ferred for various aerospace, mechanical and medical
applications. Further, applications of the FGMs have been
widely observed in the high temperature environments,
including thermal shock.

In view of the distinct advantages of functionally
graded materials, a number of investigations dealing with
thermal stresses and buckling have been reported in the
literature.

Ravichandran [1] calculated thermal residual stresses,
arising from the fabrication of a linearly elastic function-
ally graded material flat plate. Praveen and Reddy [2]
investigated the response of functionally graded ceramic-
metal plates using finite element method. They have taken
into account transverse shear strains, rotary inertia and
moderately large rotations. Pradhan et.al [3] carried out
the vibration characteristics of the FGM cylindrical shells.
Cho and Oden [4] carried out finite element analysis of
the effect of material variation through the thickness and
the size of the FGM layer on thermomechanical charac-
teristics for plane stress two-dimensional Ni-Al2O3 FGMs
under uniform heating. Reddy [5] developed theoretical
formulation and finite element model. He studied thermo-
mechanical coupling, time dependency and geometric
non-linearity behavior. Woo and Maguid [6] studied the
nonlinear behaviour of the FGM plates and shallow shells.
Green’s function is employed by Kim and Noda [7] to
analyze the deflection and transient temperature distribu-
tion of a FGM plate. Tsukamoto [8] formulated inelastic
constitutive relations micro mechanically and the thermal
stresses in FGM plates are obtained using micro mechani-
cal approach. Yang et. al [9] analyzed the large amplitude,
linear and nonlinear vibration behavior of pre-stressed
laminated plates by thermo-electro-mechanical loading.
Ma and Wang [10] studied the axisymmetric large deflec-
tion bending of a functionally graded circular plate under
mechanical, thermal and combined thermal mechanical
loadings. They employed classical nonlinear von Karman
plate theory for the analysis. Croce and Venini [11] pre-
sented a family of finite elements for the Reissner-Mindlin
functionally graded plates based on variational formula-
tion. Najafizadeh and Heydari [12] analyzed the thermal
buckling of FGM circular plate using third order plate
theory. Lanhe [13] employed the first order shear defor-
mation theory for obtaining equilibrium and stability
equations for FGM plate. He carried out buckling analysis
for different types of thermal loadings.

Pradhan [14] investigated the vibration suppression of
FGM shells embedded with magnetostrictive layers. Shen
[15] carried out post buckling analysis for a simply sup-
ported, shear deformable FGM plate with piezoelectric
actuators. His work included combined action of mechani-
cal, electrical and thermal loads. He assumed material
properties to be temperature dependent. Sladeka et. al [16]
employed a meshless local Petro-Galerkin approach and
carried out stress analysis in two dimensional, anisotropic
and linear elastic-plastic FGM.
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Yang et. al [17] presented the effect of the inherent
randomness of the FGM’s on the elastic buckling of
rectangular FGM plates resting on elastic foundation. Dai
et. al [18] employed element-free Galerkin method to
derive the shape functions using the moving least square
method for analyzing the functionally graded material
plates with distributed piezoelectric sensors and actuators.
Kyung and Kim [19] investigated three dimensional
thermo-mechanical buckling analysis for FGM plate by
using three dimensional finite element method. They as-
sumed material properties are temperature dependent and
employed time discretization Crank-Nicholson method.
Huang and Shen [20] analyzed the nonlinear vibration and
dynamic response of a functionally graded material plate
with surface bonded piezoelectric layers in thermal envi-
ronments. They employed higher order shear deformation
plate theory.

Study of thermal buckling of composite materials are
important. Chang and Shiao [21] carried out thermal buck-
ling analysis of isotropic and composite plates with cut-
outs. Chen [22] reported the thermal buckling results of
thick composite laminated plates under non-uniform tem-
perature distribution. Prabhu and Dhanraj [23] reported
the thermal buckling of composite plates.

However, research reports in the area of thermal buck-
ling of FGM plates with cutouts are limited. In the present
work, computation is carried out for thermal buckling of
FGM plates with cutouts. Material properties are assumed
to be function of temperature. Effects of plate aspect ratio,
plate thickness to side ratio, power index ‘k, size of the
cutout and three different types of boundary conditions on
the critical buckling temperature are studied.

Mathematical Formulation

Consider a rectangular plate made of a mixture of
metal and ceramic as shown in Fig.1. The material prop-
erties are gradually varied from bottom surface metal to
top surface ceramic. An exploded view with granules of
section A-A of Fig.1 is shown in Fig.2. This depicts the
gradation from pure metal to pure ceramic across the
thickness. Effective material properties Pf,  like Young’s
modulus ‘E’ and thermal expansion coefficient ‘α’ are
expressed as in original contribution Pradhan(14).

Pf  =  Pc Vc  +  Pm Vm (1)

where, Vs denotes the volume fraction of the ceramic.
This is expressed as

Vc  =  ⎛⎜
⎝

2z +h
2h

⎞
⎟
⎠

k

 where,   -h/2 ≤ z ≤ h/2 (2)

Vc  +  Vm  =  1 (3)

k is the volume fraction index. From Eq. (1) and Eq. (2)
the modulus of elasticity ‘E’, the coefficient of thermal
expansion ‘a’, and the thermal conductivity ‘K’ are ex-
pressed as,

Ef  =  (Ec − Em) Vc + Em

αf  =  (αc − αm) Vc + am

Kf  =  (Kc − Km) Vc + Km (4)

Poisson’s ratio ‘v’ is assumed to be 0.3 for both the
materials. In actual case, material properties are dependent
on the temperature. Change in temperature does affect the
strength and stiffness of the FGM plate. Thus it is neces-
sary to include the effects of temperature in the thermal
buckling analysis of the FGM plate. Material properties
as a function of temperature are employed in the analysis.
Material properties can be expressed as a nonlinear func-
tion of temperature

Pf = P0 (P−1 T −1 + 1 + P1 T 1 + P2 T 2 + P3 T 3
) (5)

Fig.1  Schematic of rectangular FGM plate

Fig.2  Section A-A (Fig.1) showing the gradation of metal and
ceramic across the plate thickness
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Poisson’s ratio ‘v’ depends weakly on temperature
change and is assumed to be constant. The temperature
change across the thickness of the FGM plate is governed
by one dimensional Fourier heat conduction equation as
mentioned by Wu Lanhe [13]

d
dz  ⎡⎢

⎣
K(z) d T

d z
⎤
⎥
⎦
  =  0        T  =  Tc     at     z  =  h ⁄ 2

                                       T  =  Tm     at     z  =  − h ⁄ 2 (6)

where, Tc, Tm are specified temperature at ceramic and
metal surfaces, respectively. Substituting conductivity ex-
pression in the Eq. (6) and solving the equation following
expressions are obtained, Shen and Noda [24].

T(z)  =  Tm + ΔT
C   ⎡⎢

⎣

⎛
⎜
⎝

2z + h
2h

⎞
⎟
⎠
  −  

Kcm
(k + 1) Kcm

  ⎛⎜
⎝

2z + h
2h

⎞
⎟
⎠

k+1

+  
Kcm

 2

(2k + 1) Kcm
 2   ⎛⎜

⎝

2z + h
2h

⎞
⎟
⎠

2k+1

  +  h.o.t ]

with

C = 1 − 
Kcm

(k + 1) Kcm
 + 

Kcm
 2

(2k + 1) Kcm
 2  − 

Kcm
 3

(3k + 1) Kcm
 3  + h.o.t.

(7)

Δ T  =  (Tc − Tm)

Kcm  =  Kc − Km

In the present analysis FSDT is employed. This ac-
counts for transverse shear strains, which are represented
as constant through the plate thickness. This theory re-
quires shear correction coefficients to compute transverse
shear force. The FGM plate of total thickness ‘h’ is con-
sidered. The xy-plane is taken to be the midplane of the
plate with the z-axis positive upward. Further, present
formulation is restricted to linear elastic material behav-
ior, small strains and displacements. To account for trans-
verse shear deformation in the plate, the displacement
components are expressed as

U (x, y, z)  =  u0 (x, y)  +  z Φx (x, y)

V (x, y, z)  =  v0 (x, y)  +  z Φy (x, y)

W (x, y, z)  =  w0 (x, y) (8)

The strain-displacement equations of linear elasticity
case are written as,

εx  =  
∂ u0
∂ x

  +  z 
∂ Φx
∂ x

  =  εx
0  +  z κx

εy  =  εy
0 + z κy

εxy  =  εxy
0  + z κxy

εxz  =  
∂ w0
∂ x

  +  Φx

εyz  =  
∂ w0
∂ y

  +  Φy (9)

The constitutive relations are written as

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

σx
σy

σx y
σx z
σy z

⎫

⎬

⎭

⎪
⎪
⎪

⎪
⎪
⎪

  =  

⎡

⎢

⎣

⎢
⎢
⎢
⎢

⎢
⎢
⎢
⎢

Q11

Q12

0

0

0

    

Q12

Q22

0

0

0

    

0

0

Q66

0

0

    

0

0

0

Q54

0

    

0

0

0

0

Q44

⎤

⎥

⎦

⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥

    

⎧

⎨

⎩

⎪
⎪
⎪

⎪
⎪
⎪

εx − αΔT
εy − αΔT

εx y
εx z
εy z

⎫

⎬

⎭

⎪
⎪
⎪

⎪
⎪
⎪

(10)

where,

Q11 = Q22 = 
Ef

1 − v2 ;

Q12 = v Q11 ; Q44 = Q55 = Q66 = 
Ef

2 (1 + v)

The stress resultants are expressed as

⎧

⎨

⎩

⎪
⎪

⎪
⎪

Nx

Ny

Nx y

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  =  ∫
− h ⁄ 2

h ⁄ 2

    

⎧

⎨

⎩

⎪
⎪

⎪
⎪

σx

σy

σx y

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  d z

and

⎧

⎨

⎩

⎪

⎪

Qx

Qy

⎫

⎬

⎭

⎪

⎪
   =   ∫

− h ⁄ 2

h ⁄ 2

     
⎧

⎨

⎩

⎪

⎪

σxz

σyz

⎫

⎬

⎭

⎪

⎪
  d z (11)
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The moment resultants are written as

⎧

⎨

⎩

⎪
⎪

⎪
⎪

Mx

My

Mx y

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  =  ∫
− h ⁄ 2

h ⁄ 2

    

⎧

⎨

⎩

⎪
⎪

⎪
⎪

σx

σy

σx y

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  z d z (12)

Substituting Eqns. (8-10) in Eqns. (11-12)

⎧

⎨

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪

Nx

Ny

Nx y

Mx

My

Mx y

⎫

⎬

⎭

⎪
⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪

  =  
⎡

⎢

⎣

⎢

⎢

 Aij    Bij

 Bij    Dij

⎤

⎥

⎦

⎥

⎥
  

⎧

⎨

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪

εx
0

εy
0

εx y
0

κx

κy

κx y

⎫

⎬

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪
⎪
⎪

  −  

⎧

⎨

⎩

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪

Nt x

Nt y

0

Mt x

Mt y

0

⎫

⎬

⎭

⎪
⎪
⎪
⎪
⎪

⎪
⎪
⎪
⎪
⎪

where i, j = 1, 2, 6 (13)

⎧

⎨

⎩

⎪

⎪

Qx

Qy

⎫

⎬

⎭

⎪

⎪
   =   

⎡

⎢

⎣

⎢

⎢

 A55      0

 0        D44

⎤

⎥

⎦

⎥

⎥
  
⎧

⎨

⎩

⎪

⎪

εxz

εyz

⎫

⎬

⎭

⎪

⎪
(14)

where, Aij , Bij , Dij = ∫
− h ⁄ 2

h ⁄ 2

 Qij (1 , z , z2
) d z  for i, j = 1,2,6

Aij  =  ∫
− h ⁄ 2

h ⁄ 2

   ks Qij d z          for i, j = 4, 5

where, ks, = 5/6 is considered to account for the effect of
transverse strains.

Thermal force and moments are given as,

⎡
⎣
Nt⎤⎦

  =  ∫
− h ⁄ 2

h ⁄ 2

  Qij  

⎧

⎨

⎩

⎪
⎪

⎪
⎪

αΔT

αΔT

0

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  d z

and

⎡
⎣
Mt⎤⎦

  =  ∫
− h ⁄ 2

h ⁄ 2

  Qij  

⎧

⎨

⎩

⎪
⎪

⎪
⎪

αΔT

αΔT

0

⎫

⎬

⎭

⎪
⎪

⎪
⎪

  z d z (15)

where, ΔT is the applied temperature.

Field variables used are u, v, w, Φx, Φy which denote
in plane, normal displacements and rotations, respec-
tively. Eight noded isoparametric element is employed for
the analysis. The generalized displacements are approxi-
mated over an element by

⎧
⎨
⎩q

⎫
⎬
⎭  =  ∑ 

i = 1

8

   ⎡
⎣
Ni⎤⎦

   ⎧⎨
⎩
qi

e⎫
⎬
⎭

(16)

where, ⎧
⎨
⎩
qi

e⎫
⎬
⎭
  =  ⎡

⎣
u0i  v0i  w0i  Φx i  Φyi⎤⎦

T. Ni is the shape
function.

Midplane strains and curvatures are written in terms
of generalized degree of freedom

⎧
⎨
⎩ε

⎫
⎬
⎭  =  

⎧
⎨
⎩ε

0⎫
⎬
⎭  +  z ⎧

⎨
⎩κ

⎫
⎬
⎭ (17)

where, ⎧
⎨
⎩ε

⎫
⎬
⎭  =  ⎧⎨

⎩
εx     εy     εxy 

⎫
⎬
⎭

T

⎧
⎨
⎩ε

0 
⎫
⎬
⎭  =  ∑ 

i = 1

8

   ⎡
⎣
Bti⎤⎦

   ⎧⎨
⎩
qi

e⎫
⎬
⎭
 ,   ⎧

⎨
⎩κ ⎫

⎬
⎭  =  ∑ 

i = 1

8

   ⎡
⎣
Bbi⎤⎦

   ⎧⎨
⎩
qi

e⎫
⎬
⎭
 ,

⎧

⎨

⎩

⎪

⎪

εxz

εyz

⎫

⎬

⎭

⎪

⎪
  =  ∑ 

i = 1

8

   ⎡
⎣
Bsi⎤⎦

   ⎧⎨
⎩
qi

e⎫
⎬
⎭

(18)

where

⎡
⎣
Bt i⎤⎦

  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

∂Ni
∂ x

0

∂Ni
∂ y

      

0

∂Ni
∂ x
∂Ni
∂ x

      

0

0

0

      

0

0

0

      

0

0

0

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥
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⎡
⎣
Bb i⎤⎦

  

⎡

⎢

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

0

0

0

      

0

0

0

      

0

0

0

      

∂Ni
∂ x

0

∂Ni
∂ y

      

0

∂Ni
∂ y
∂Ni
∂ x

⎤

⎥

⎦

⎥
⎥
⎥
⎥
⎥

⎥
⎥
⎥
⎥
⎥

⎡
⎣
Bs i⎤⎦

  =  

⎡

⎢

⎣

⎢
⎢

⎢
⎢

 0      0     
∂N i
∂ x

     N i     0

 0      0     
∂N i
∂ y

     0     N i

⎤

⎥

⎦

⎥
⎥

⎥
⎥

(19)

[Bb], [Bt] and [Bs] corresponds to bending, tensile and
shear strain-displacement matrices, respectively. Total
potential energy is the sum of the strain energy and the
work done by the in-plane loading.

π  =  π1  +  π2 (20)

where π1 is the strain energy and π2 is work done by the
in-plane loading due to temperature change. Strain energy
is expressed as

π1  =  12  ∫ ∫ ∫  
v

 ⎧
⎨
⎩ ε ⎫

⎬
⎭  

⎧
⎨
⎩ σ ⎫

⎬
⎭ dV (21)

Converting the volume integral into surface integral,

π1 = 12 ∫ ∫  
R

⎡
⎣
Nx εx + Ny εy + Nxy εxy + Qx εxz + Qy εyz⎤⎦

 d x d y

(22)

work done by inplane thermal loading is written as

π2 = 12 ∫  
Ω

 
⎡
⎢
⎣
Nx 

⎛
⎜
⎝

∂w
∂x

⎞
⎟
⎠

2

 + Ny 
⎛
⎜
⎝

∂w
∂y

⎞
⎟
⎠

2

 + 2Nxy 
⎛
⎜
⎝

∂w
∂x

⎞
⎟
⎠
 ⎛⎜
⎝

∂w
∂y

⎞
⎟
⎠

⎤
⎥
⎦
 dA

(23)

Substituting Eqs. (13-17) in terms of strain matrices in
Eqs.(22-23)

π1  =  ∑ 
e = 1

n

  ⎧⎨
⎩

1
2 

⎧
⎨
⎩q

e⎫
⎬
⎭

T
  ⎡⎢
⎣
Ks

 e⎤
⎥
⎦
 
⎧
⎨
⎩q

e⎫
⎬
⎭  −  

⎧
⎨
⎩q

e⎫
⎬
⎭

T
 ⎡⎢
⎣
Rt

 e⎤
⎥
⎦
 ⎫⎬
⎭

=  12  ⎧
⎨
⎩q

⎫
⎬
⎭

T  ⎡
⎣
Ks⎤⎦

  ⎧
⎨
⎩q

⎫
⎬
⎭  −  ⎧

⎨
⎩q

⎫
⎬
⎭

T  ⎡
⎣
Ft⎤⎦

(24)

π2  =  ∑ 
e = 1

n

  12 
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⎨
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  ⎡⎢
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 e⎤
⎥
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⎧
⎨
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2
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⎫
⎬
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⎨
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⎫
⎬
⎭ (25)

Elemental stiffness matrix is expressed as

⎡
⎢
⎣
Ks
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⎥
⎦
 = ∫ ∫  

e

⎧
⎨
⎩
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⎦
 
⎫
⎬
⎭
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(26)

where,
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⎣
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(27)

[Bb], [Bt] and [Bs] corresponds to bending, tensile and
shear strain-displacement matrices, respectively. [A] is
written as

⎡
⎣A

_
⎤
⎦  =  

⎡

⎢

⎣

⎢

⎢

 A55      0

 0        A44

⎤

⎥

⎦

⎥

⎥
(28)

Element geometric stiffness matrix is expressed as

⎡
⎢
⎣
Kg
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⎥
⎦
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e
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where,
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⎥

⎥
  and
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Element thermal load vector is written as,

⎧
⎨
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⎬
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e
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⎬
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  d x d y (31)

For pre-buckling displacements, first variation of strain
energy is equated to zero,

δπ1  =  0

This yields

⎡
⎣
K0⎤

⎦
 ⎧⎨
⎩
q⎫

⎬
⎭
  =  ⎧⎨

⎩
Ft

⎫
⎬
⎭

(32)

For the critical buckling state corresponding to the
neutral equilibrium condition, second variation of total
potential energy is equated to zero. Finally, one obtains

| [K0] + λ [Kg] |  =  0 (33)

where λ is determined by solving the above eigenvalue
problem. The product of λ and the temperature difference
ΔTcorresponds to critical buckling temperature Tcr of the
FGM plate.

Validation

Developed finite element computer code is first vali-
dated for an isotropic plate as mentioned in Boley and
Weiner [25] and Chen [22]. As a particular case of FGM
material, when the volume fraction index k is considered
to be 0, the FGM material behaves  exactly as isotropic
and homogeneous material. Material properties of Chen
[22]. E1/E2 = 1, a/h = 100, v = 0.3, α = 1x10-6/0 C are
employed. A refined finite element mesh of two thousand
eight node quadrilateral elements is employed for the
analysis. Critical buckling temperatures are computed.

Table-1 shows the comparison of non-dimensional
critical buckling temperature of isotropic plate subjected
to uniform temperature distribution with those of Boley
and Weiner [25] and Chen [22]. From Table-1, it is ob-
served that the present computed critical temperatures

agree with those reported in the literature Boley and
Weiner [25] and Chen [22].

A FGM plate problem from reference Lanhe [13] is
also considered for validating the present analysis. Mate-
rial used for validation is alumina and aluminum as the
ceramic and the metal, respectively. Material properties
employed in the computation are listed in Table-2.

Thermal buckling temperature of FGM plates under
uniform temperature are computed. Uniform temperature
of 300°C is applied to the FGM plate. Predicted critical
buckling temperatures for simply supported FGM plate vs.
thickness to side ratio are plotted in Fig.3. In Fig.3, results
obtained from the present analysis and results reported by
Lanhe [13] are compared. From this figure one could note
that the difference between the results obtained from
present analysis and those reported in reference Lanhe
[13] is less than two percent. Further, thermal buckling of
simply supported FGM plate under nonuniform tempera-
tures are computed. Critical buckling temperature vs. vol-
ume fraction index ‘k’ of the FGM plate are plotted in

Table-1 : Non-dimensional critical buckling
temperature Tcr = λΔT x α x 104 

for isentropic plate
a/b ratio Boley and

Weiner [25]
(Tcr)

Chen [22]
(Tcr)

Present
analysis

(Tcr)
0.25 0.686 0.691 0.691
0.5 0.808 0.814 0.808
1.0 1.283 1.319 1.315
1.5 2.073 2.101 2.085
2.0 3.179 3.191 3.205
2.5 4.599 4.601 4.612
3.0 6.332 6.330 6.333

Table-2 : Material properties of alumina and
aluminium, Pradhan [14]

Material
properties

Alumina Aluminium

E 380 GPa 70 GPa
K 10.4 W

mk 104 W
mk

α 7.4 x 10-6/0C 23 x 10-6/0C

v 0.3 0.3
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Fig.4. Results reported by Lanhe [13] are also plotted in
this figure. In this figure one could notice that the present
results and those reported in reference Lanhe [13] are in
good agreement.

Results and Discussion

To study the thermal buckling of a rectangular FGM
plate with circular cutout is carried out. Finite element
analysis is employed. Only square plate results are pre-
sented. A typical one quarter finite element mesh of the
quarter square plate consists of 1033 nodes and 320 quad-
ratic eight node elements is depicted in Fig.5. However, a
refined full size finite element mesh of four thousand such
elements is employed for the analysis. The FGM plate is

considered to be made of silicon nitride and stainless steel.
Mechanical properties of these materials are listed in
Table-3. In the analysis material properties of the constitu-
ent materials are considering to be function of temperature
as mentioned in Eq. (5). Temperature dependent constants
of silicon nitride and stainless steel are listed in Table-4.

Following three different boundary conditions are
considered for the computation of the Material Properties
critical buckling temperatures of the FGM plate with
cutout. BC1, all the sides are simply supported (SSSS),
BC2, all the sides are clamped (CCCC) and BC3 two
opposite sides are clamped and other two sides are simply
supported (CCSS). Thus following degrees of freedoms
are restrained for the three boundary conditions:

BC1 : at x = 0, a;  u = w = Φy = 0

           at y = 0, b;  v = w = Φy = 0 (35)

Fig.3  Critical buckling temperature of simply-supported
FGM plate (a/b=1, k=0)

Fig.4  Critical buckling temperature of simply-supported
FGM plate (a/b=1, h/a=0.2)

Fig.5  Finite element mesh of FGM square plate with circular
cutout

Table-3 : Material properties of Silicon Nitride and
Stainless Steel, Shen and Noda [24]

Material 
Properties

Silicon Nitride Stainless Steel

E (GPa) 348.43 201.04

K ⎛⎜
⎝

W
mk

⎞
⎟
⎠

13.72 15.38

α (x 10-6/0 C) 5.87 12.33

v 0.3 0.3
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Table-4 : Material constants of Silicon Nitride and Stainless Steel, Shen and Noda [24]
Material Properties P0 P-1 P1 P2 P3

Silicon
 Nitride

Ec 348.43e+9 0 -3.07e-4 2.16e-7 -8.946e-11

αc 5.8723e-6 0 9.095e-4 0 0

Kc 13.723 0 0 0 0
Stainless

Steel
Em 201.04e+9 0 3.079e-4 -6.534e-7 0

αm 12.33e-6 0 8.086e-4 0 0

Km 15.379 0 0 0 0

Fig.6  Critical buckling temperature vs the sizes of the cutout in the FGM plate under uniform temperature, (a/b=1, k=1) for 
(a) BC1 (b) BC2, (c) BC3 boundary conditions and (d) BC1, BC2 and BC3 boundary conditions (h/a=0.2)
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BC2 : at x = 0, a;  u = v = w = Φx = Φy = 0
           at y = 0, b;  u = v = w = Φx = Φy = 0 (36)

and

BC3 : at x = 0, a;  u = v = w = Φx = Φy = 0

           at y = 0, b; v = w = Φx = 0 (37)

Critical thermal buckling load of the rectangular FGM
plate with circular cutouts has been computed for various
cases. The FGM plate subjected to uniform and non-uni-
form temperature loading are considered. Fig.6 shows the
critical buckling temperatures of FGM plate under uni-

form temperature distribution for various thickness to side
(h/a) ratios and different boundary conditions. In this
figure one can note that buckling temperature increases
gradually with increase in cutout size in case of all edges
simply supported case BC1 and clamped-simply sup-
ported BC3 case. But in case of all edge clamped BC2,
critical buckling temperature increases rapidly as cutout
size increases. Buckling temperature also increases with
increase of h/a ratio. It also shows that buckling tempera-
ture is highest for all sides clamped BC2 case. Fig.7 shows
the effect of volume fraction index variation on critical
buckling temperature. It shows that, buckling temperature
decreases with increase in volume fraction. There is rapid
decrease in buckling temperature as power index k in-

    Fig.7  Critical buckling temperature vs power index ‘k’ of the FGM plate under uniform temperature, 
(a/b=1, h/a=0.3) (a) BC1 (b) BC2 and (c) BC3 boundary conditions
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crease from 0 to 2. When k is greater than 2 buckling
temperature almost remains constant for BC1 and BC3
cases. Metal content in the plate increases as power index
increases. This leads to decrease in buckling temperature.

Figures 8 and 9 show the variation of critical buckling
temperature for FGM plate under non-uniform tempera-
ture distribution across thickness. Qualitatively the results
obtained for both uniform (Figs.6-7) and non-uniform
(Figs.8-9) temperature distribution cases are the same.
However, results obtained with non-uniform temperature

distribution (Figs. 8-9) predicts substantially more critical
buckling temperature as compared to uniform temperature
distribution case (Figs. 6-7). Figs.10-11 show the effect of
temperature dependent material properties on critical
buckling temperature for uniform temperature case. Here
one could note that temperature dependent material prop-
erties causes substantial (around 25 per cent) decrease in
critical buckling temperature of the FGM plate for BC1,
BC2 and BC3 cases. This is because of the fact that
increase of temperature causes reduction in stiffness of the
plate. These results obtained for FGM plate with cutout

Fig.8  Critical buckling temperature vs the sizes of the cutout in the FGM plate under non-uniform temperature,
(a/b=1, k=1) for (a) BC1 (b) BC2, (c) BC3 boundary conditions and (d) BC1, BC2 and BC3 boundary conditions (h/a=0.2)
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are similar to the thermal buckling results of isotropic and
composite plates with cutout by Chang and Shiao [21].
Figs.12-13 shows the effect of temperature dependent
material properties on critical buckling temperature for
non-uniform temperature case. Here also temperature de-
pendent material properties causes substantial (around 25
per cent) decrease in critical buckling temperature of the
FGM plate for BC1, BC2 and BC3 cases. These results
obtained for FGM plate with cutout are similar to corre-

sponding results of Chang and Shiao [21] for composite
plates with cutout.

Conclusions

Based on first order shear deformation theory finite
element code is developed. The developed computer code
is validated for thermal buckling of isotropic and FGM
plates. Results obtained from present finite element analy-
sis do agree with those reported in the literature. Critical

 Fig.9  Critical buckling temperature vs power index ‘k’ of the FGM plate under non-uniform temperature, 
(a/b=1, h/a=0.3) (a) BC1 (b) BC2 and (c) BC3 boundary conditions
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buckling loads of square FGM plate with circular cutout
are computed. Uniform and non uniform temperature
distributions across the FGM plate thickness are consid-
ered. Further, FGM material properties are considered to
be temperature dependent. Effects of (i) plate aspect ratio,
(ii) plate thickness to side ratio, (iii) power index ‘k’ and
(iv) size of the cutout and (v) the three different boundary
conditions on the critical buckling temperature are inves-
tigated. Based on the present numerical results following
conclusions are made.

• Critical buckling temperature increases with increase
in radius of the cutout in the rectangular FGM plate.

• Critical buckling temperature of the FGM plates in-
creases with increase in thickness to span ratio.

• Critical buckling temperatures of the FGM plates de-
crease with increase in power law index ‘k’.

• Critical buckling temperatures of the FGM plates are
decreased when material properties are considered to
be function of temperature as compared to the results
obtained where material properties are assumed to be
independent of temperature.

• Critical buckling temperatures for BC1 (SSSS) bound-
ary condition are larger than the corresponding tem-
peratures obtained for BC2 (CCCC) and BC3 (CCSS)
boundary conditions.

 Fig.10  Effect of temperature dependent material properties and cutout size on critical buckling temperature of the FGM plate
under uniform temperature,(a/b=1, k=1, h/a=0.3) for (a) BC1 (b) BC2 and (c) BC3 boundary conditions
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