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Abstract

The present investigation deals with the study of vibration and dynamic instability behaviour
of square isotropicflaminated composite plates with circular hole subjected to partially
distributedfollower edge forcei using finite element method. The first order shear deformation
theory is used to model the plate, considering the effects of shear deformation and rotary
inertia. The modal transformation technique is applied to the resulting equilibrium equation
for subsequent analysis. Structural damping is introduced into the system in terms of equivalent
viscous damping to study the significance of damping on stability characteristics. The effects
of cutout size, load width, boundary condition, ply orientation, direction control of the load
and damping parameters are consideredfor the stability behaviour of the plates. The results
show that under follower loading, the system is susceptible to instability due to flutter alone
or due to both flutter and divergence, depending on system pctrameters.

Key words: cutout, dynamic stability, follower loading, structural damping, finite element
method

Notation

a,b = dimensions in the x and y directions respectively
c = load width parameter
d = diameter of the circular cutout
h = thickness
r = radius of the circular cutout
T = kinetic energy
Ur = strain energy associated with bending with

transverse shear

U2 = work done by the initial in-plane stresses and

Lhe non-linear strain

{4} = nodal displacement vector

[Kl = elastic stiffness matrix

[Ko] = stress stiffness matrix

lK u c]= nonconservatice matrix

!1.{ - mass matrix

[C] = damping matrix
v = Poison's ratio

tOl = modal matrix
P = edge load

[F] = flexural rigidity matrix

[B] = strain displacement matrix

Y = non-dimensional load

), = non-dimensional frequency

I = damping loss factor

Q = load direction control parameter

0l = angular frequency of transverse vibration
6%''c = variational work done by nonconservative force

Introduction

Lightweight isotropic and laminated composite struc-
tural members have been extensively used in many engi-
neering fields such as in aerospace, mechanicat, civil,
automotive and automobile applications. The stability be-
haviour of such structural members is of increasing impor-
tance. The applied loads are considered as

nonconservative forces if the work done by the system is
path dependent. Some of the important practical illustra-
tions of nonconservative forces are the aerodynamic drag
forces acting on the body of rockets, missiles and other
flight vehicles, the wing of an aircraft carrying jet engines
subjected to concentrated follower forces (engine thrust),
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a cantilever pipe conveying fluid, the forces acting on the
rotor of a gas turbine, the forces acting on the links and
elements in automatic control system applications and the
frictional forces acting on the break shoes of automobiles
etc. The nonconservative loading is generated by consid-
ering a load which follows the rotation of the point of
application in the prescribed manner. The ratio of rota-
tional angle of the load to that of the point of application
is called the tangency parameter of the loading. By chang-
ing this tangency parameter, a wide range of nonconser-
vative loading cases can be obtained and it permits the
study of the elastic systems under nonconservative load-
1ng.

Two types of instability may occur in structural sys-
tems under the application of nonconservative loading,
either divergence (static instability)/flutter (dynamic in-
stability) or both. The presence of nonconservative loads
makes the governing equation of the system mathemati-
cally non-self-adjoint and corresponding eigenvalue prob-
lem is ruled by a non-symmetric matrix and can exhibit
complex eigenvalues.

The stability of nonconservative systems has been
extensively studiedbyBolotin [1-2] andZiegler [3]. Many
investigations have been reported on stability of columns,
beams and other systems subjected to follower forces.
Some of the important contributions are as follows:
Herrmann and co-authors [4-5] studied the stability of
elastic systems subjected to nonconservative forces and
the effect of damping on the system. Sankaran and
Venkateswara Rao [6] studied stability of tapered cantile-
ver columns subjected to follower forces. Leipholz l7l
proposed a variational principle for a clamped-free rod
subjected to a tangential follower force. Sugiyama and
co-investigators [8-11] studied both experimentally and
theoretically stability behaviour of columns and beams
subjected to nonconservative follower forces. Argyris et
al. l12l studied static and dynamic stability of non-linear
elastic systems under nonconservative forces. Grasparini
et al. [13] studied the stability and instability regions of
nonconservative continuous systems under partially fol-
lower forces. Investigations on the stability characteristics
of plates under follower loading are relatively few. Far-
shad [14] studied the stability of cantilever plates sub-
jected to biaxial subtangential loading. Adali [15] srudied
the stability of a plate under nonconservative forces. Culk-
owski and Reismann [16] presented an analytical method
for stability analysis of a plate under two follower forces.
Leipholz [17] studied the stability of recrangular simply
supported plates subjected to non-increasing tangential
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forces. Leipholz and Pfendt [18] used extended Galerkin's
theory to analyze a plate with distributed follower forces
on the surface of the plate. Higuchi and Dowell [19]
investigated the effects of structural damping on flutter
behaviour of plates. Ashwini Kumar and Srivastava [20]
studied the stability of rectangular elastic plates under a

follower force. Kishore [21] studied on the stability of an

orthotropic plate under a follower force. Kim and his
co-authors present extensive studies on the dynamic sta-
bility of a plate under follower force at the edge and at
intermediate locations [22-231. Datta and Deolasi [24]
studied the dynamic instability characteristics of an iso-
tropic plate subjected to partially distributed follower edge
loading with damping. Herrmann [25], Komarakul and
Ar or a [26], B i sm arck 127 l, Langlhj em and S u gi y am a [2 8 ]
and Bazant l29l have presented extensive reviews on
different problems involving nonconservative forces.

In the literature it is found that the researchers mainly
focused their attention on structural elements subjected to
uniformly distributed follower forces, which cause an

uniform stress field. In many practical applications, how-
ever, structural members are also subjected to non-uni-
form/partial load having different nonconservative
parameters. For example skin (panel) of the wing structure
of an aircraft carries non-uniform partlal in-plane load,
making the system susceptible to buckling. Further, in-
plane forces change their directions following the defor-
mation of the structure.

The studies on stability behaviour of plates with hole
subjected to follower force are not found in the literature.
It is felt that this is an important area ofresearch involving
stability behaviour of structural elernents. In the present
study an attempt as been made to study the effect of
follower force on isotropic/laminated composite plates
with a hole considering different parameters like structural
damping, load direction control, partial load and the re-
sults are presented.

Theory and Formulations

The extended Hamilton principle is applied to a
plate/panel to account for the work done by nonconserva-
tive forces. The extended Hamilton principle [15] can be
exDressed as

tr. 
'r.

oJrr- u)dt+!aw*ra,=o (1)
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5 W".= 6 I4z"+ 6 I,7, (8)

where, Wo and Wo are work done by the damping and
follower forces respectively and are expressed as follows

I

6I4/^=) ar.eP.o .)r ? r' I y,(
,-1

where 1 is the number of nodes,

,.TT
= 16 q l- IM' tPl tN,llqlLlj.-.d-''

= {a n}t 1r<*r)[a]

6wo={a q}r tctlil)

where P,, w,and 0n, are the force, deflection and rotation
about y axis at thd node n, 1 is the number of nodes and

fCl is the damping matrix.

tM, tNal and [P] are written as follows:

tMr = 1-1ru,1, lNrf,...,{N, }l in which lry,} = {0, 0, l, 0. 0lr
Ll 'l | ") L 'Il l rl

T_.tt l'=[{t } .{t l ,{4} lrL' 'r' '2 'rl
in which lNrI = 10, 0, 0, 0, llr

r rt

tPl= - diasflPl, tP,1,..., tP,llL', " ',)
the follower force matrix [K".] in equation (9) is given by

[K,vc]= tM- tPl [Nd]

where [K1r6,J is the nonconservative loading matrix which
teikes into account the nonconservative component of the
follower load.

Substituting energy expressions in the equation (l), the
following equilibrium equation for the plate is obtained.

ra I4l + tc1 Iii + tn {ql - p 
I 

t,Kc] + r,r".t] {cl = o (1 1)

where P is the magnitude of the applied load.

The kinetic energy Zof the plate in the above equation
can be expressed as

I fft ') ) )
r=;pJJJ (r- +i- +w-)dxdydz (2)

The strain energy expressions are expressed as fol-
lows:

For a laminate under flexural and shear deformation,
the strain energy with bending and shear can be expressed

by integrating the sum of the strain energies in the element
of the individual lamina over the entire area as

where p is the number of layers, Zo_, and Zo are the
distances from the middle plane to the bottom and top of
kth lamina. For the kth lamina with general ply orientation,

the terms {e, } ana I g | - truu" been represented [30] . The
I rJ; L-) l

work done by the initial in-plane stresses and the nonlinear
strain can be expressed as

ltrrI olr rur=;JJJl"-Jiu,rldxdYdz (4)

Using the classical lamination theory and standard

finite element procedures l3I, 321, expressions for the

energies can be written in finite form as

1T
u, = ' Iql' lr<llql (s)-2

1.7U.: - lql' tx-llql (6)
' ^' 

v'-'

1Tr=:bf v,ttll e)
2

where {q} =lrir,w,0ri0yi)' ,i= 1,2. . . n(n isthe number

of nodes) is\he overall displacement vector, [rK], and tK5J
are elastic and geometric stiffness matrices and [il4] is
consistent mass matrix [30] respectively.

Further, 6I4rC = Variation of the work done by the .

nonconservative forces, which consists of two parts: fol-
lower forces and damping forces, and can be expressed as

(e)

(10)
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(16)For sinusoidal motion of the plate, structural damping
can be expressed in terms of an equivalent viscous damp-
ing matrix as follows

tq =a t,<r
Cr)

(r2)

where q is the loss factor for the plate material and (J) is
frequency of flexural vibration of the plate. It is obvious
from the formulation of [K7u,6,J that the matrix [K"al is
non-symmetric. Hence the equilibrium equation (11) leads
to a non-self-adjoint eigenvalue problem for non-zero P.

Modal Transformation

The orders of the finite element matrices in equation
(1 1) are very large and the solution of this equation in its
original form may be prohibitive, particularly for determi-
nation of the flutter load. Hence a modal transformation is

applied to equation (1 1) to reduce its size and to retain only
the most dominant modes of vibration. The modal trans-
formation is performed by means of the first few normal
modes of vibration.

The equilibrium equation for free vibration of an un-
damped unloaded plate can be written as

Now considering the motion of the plate in the form

t-t f. I ir'r/ -jql = tE.l 
e' -', Equation (16) changes to

t0 = A lrrt
0)

- 
"{Eo}+frr 

+ 
'"4) 

tA] - p rftcr]{6.}= o

- rlt[M lq^]+ ltl {q^} = or"l r"l (1 3)

where cD is the angular natural frequency of vibration and

{qo} corresponds to the mode shape of free vibration.
Equation ( 13) is solved for the first few modes of vibration
by means of a subspace iteration method. Let [Q] be a
modal matrix, which contains.the first few normal modes
ofthe free vibration problem ([3.)j and let

{q}= tot le i (r4)

wtrere {€ } are normal coordinates.. Substituting eqrylr.on

(14) in equation (11) and premultiplying by [Q]r,'the
following modal equilibrium equation is obtained.

wnere

ttt = lQtrtcl lql andtP " '-rr"':ct = Iot' 
ftrot 

* II(NC]]rot ;

[A] is a diagonal matrix containing the eigenvalues of
equation (13), that is squares ofthe natural frequencies of
free vibration ofthe unloaded plate. From equation (12),

f..l ^ r'.1

lEi*r0r{E}+[rnt-prftc]]{6}=0 (1s)

- 
" {E } 

+ r n rAt 
{eo} 

+(rnt - p rftcl 
) {er1 

= o ".

(r1)

Equation (1 7)isaneigenvaluepr ob lem with eigenval-

u", tl2, which are the squares of the natural frequencies of
free vibration under follower load P. Equation (17) can be
solved by using standard eigenvalue routine for a complex

general matrix. The imaginary part of trl corresponds to the
exponential increment or decrement of the amplitude of
vibration. The values of o2 depends on the magnitude of
the applied load P. Depending on the nature of ro2, the
system may loose stability either by divergence or by

flutter. If ro2 reduces to zero with the increase in the value
of P, then the loss of stability is termed as divergence.
Instead, if any two frequencies coalesce each other and
become complex conjugate, then the loss of stability is by
flutter. The system is unstable when any of the values of
to in equation (17) has a negative imaginary part. Further,
if during the transition from stability to instability of the

real part ofro is zero, then instability occurs due to diver-
gence. Other wise instability occurs due to flutter.

Description of the Problem

The general problem considered here consists of a
rectangular cantilever plate (a x b) having cutout diameter
(d) and thickness (h) subjected to partial follower edge
load which is acting opposite to the clamped edge side as

shown in Fig.1. The load direction control parameter (<p)

is used. The inclination of the follower load with reference
to x-direction is then defined by the product g 0r, where

g = 1 defines a tangential follower load and e = 0 defines
a non-follower load. Fig.2(a) shows the specific case of a
square (a = b) CFFF plate (plan view) subjected to partial
follower edge load and Fig.2(b) represents the finite ele-
ment mesh discretization of the plate with hole. An eight
nbded isoparametric quadratic element is employed in the
present analysis by using Mindlin's plate theory consider-
ing five degrees of freedom u, v, w, 0*, and 0u per node.
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Figure l@)

Fig. I Plate underfollowerforce
(a) Geometry of the plate with circular hole

(b) Plate under tangential follower force

Fig. 2a Cantilever plate with circular cutout subjected to par-
tial edge load extending from the centre (plan view)

The shear correction factor ofl [33] has been employed
o

to account for the nonlinear distribution of shear strain

through the thickness. In the present problem two types of
material properties (Mr, Mz) are considered with C-F-F-F
and C-F-S-S boundary conditions as follows:

VOL.56, No.4

Fig. 2b Finite element meiili'pittem for C-F-F-F curved
panels with in.plane load (plan vies)

The elastic constants of isotropic material (M1) used

in the present investigation are

Er.

E; = t.O, Gtz= Grt= G2t= 0'3846E11, v = 0.3

andthatofl aminatedcompositemater ial

E,,
(Mr) are f = 00, G 12= G *= 0.6 822,

ZL

G2, = 0.SErr.v p= 0.25 - The orientation (0) of fibers is

measured with reference to x-direction (counter-clock-
wise positive). In the formulation of stiffness matrix for
composite plate element, all the possible coupling effects
have been considered.

Boundary Conditions:

a) On edges parallel to y axls

i) Simply Supported, S : w = 0* = 0,

ii) Clamped, C: u = v - w = 0y = 0x = 0
iii) Free, F: no restraints

b) On edges parallel to x axis

i) Simply Supported, S: w = 0, = 0,

ii) Clamped, C: u = v - w = 0y = 0x = 0
iii) Free, F: no restraints

In the present problem damping parameter (q) load

direction control parameter (g), load width parameter c,

JOURNAL OF AEROSPACE SCIENCES & TECHNOLOGIES
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cutout ratio (r/b), (where, r is the radius of the circular
cutout) are considered.

A computer program has been developed to perform
all the necessary computations. The element elastic stiff-
ness and mass matrices are obtained by using standard
procedure of assembly. The subspace iteration method and

complex eigenvalue solver is adopted throughout to solve
the eigenvalue problems. In the present analysis, the non-
dimensional frequencies and buckling loads are repre-
sented by the following definitions.

For Material (M1)

231

".2h=ab and,y = ItJ"62 72,

whereD =Erh3/12(l-12)

For Material (M2)

",2L=AD andy= N*b2/Errh3

where.l, = non-dimensional complex frequency, y = non-
dimensional load

Results and Discussions

Table-l shows the convergence and comparison of
fundamental frequencies ofvibration for a cantilever plate
with 0/90/0, 45/-45/45 orientations. The results are com-
pared with those of Qatu [3a]. Fig.3 shows the comparison
of nondimensional buckling load for an isotropic simply
supported square plate with cutout subjected to uniaxial
compression load with Lee et al. [35]. Further to check the
validity of the present model subjected to follower loading
the results for CFSS boundary conditions are compared
with Adali [15] and Deolasi [24] in,Table-2 for an iso-
tropic plate. The comparison shows that the flutter loads
and flutter frequencies subjected to uniformly distributed
follower loads are in good agreement with the published
results. In the present paper, the results are mainly con-
cerned with the first flutter mode and aspect ratio of a/b=
1, breadth to thickness ratio ofb/h= 100 for all the cases
unless otherwise mentioned.

Effect of Follower Force on Isotropic Plates with
Cut-outs

Figures 4(a-b) and 5(a-b) show non-dimensional real
and imaginary part bf the frequency versus nondimen-

0.95

lol loo

0.m 0.05 0.10 0.15

r/b raUo

Fig. 3 Non-dimensional buckling load with cutout size ratio

for dffirent r/b

sional load (y) for C-F-F-F and C-F-S-S plates respectively
having direction control parameter (<p) equal to I (purely
tangential) subjected to follower edge force with c/b = I
and material property M1. In this analysis the first flutter
mode is observed between the second and third eigenval-
ues for CFFF and the first and second frequencies for
CFSS cases respectively. From the figures (real part vs
load), it is observed that the critical flutter loads are
gradually decreasing with increasing cutout size. From the
figures (imaginary part of the frequency vs load), it is
observed that the eigen frequencies are having zero imagi-
nary roots until flutter occurs, and changing of their mag-
nitude is noticed after the flutter mode. Figs.6 and 7 show
the variation of flutter frequencies with load width pa-
rameter for CFFF and CFSS plate subjected to partial edge
load [Fig.2b] with different cutout ratio for the first flutter
mode. From the figures it is observed that the flutter
frequencies are gradually decreasing with increasing load
width parameter (c/b).

Table-l : Convergence of non-dimensional frequen-
cies without in-plane load of cros-ply laminated

plate (a/b = 1, b/t=100, Etr=138Gpa,Ezz=8.96Gpa,

vt2=0.3, l.=rrlb2 {@/ nn h )

Non-dimensional Frequencies (1,)

Element Size 0/90t0 45t-45t45

6x6
8x8

10x10

Oatu I34l

0.9994

0.9993

0.9993

0.9998

0.4603

0.4596

0.4591

0.4607
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o246!1012ia161020?jL
Nondirnensional load (7)

Figure 4(a) Real part ofthe tequency vs load

l0 t5

Non{lmensional load (7)

4(b) Imaginary part of the frequency vs load

Fig. 4 Non-dimensional frequency vs non-dimensional load

for CFFF plate for different cutout ratios
subiected follower force with c/b.= I
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0 l0 20 30 ,+0 50 g0 70

Nondimenslonal applied load (y)

Figure 5(a) Real part of the frequency vs load

01020s0405080
Nondimensiond applied load (r)

5(b) Imaginary part of the frequency vs load

Fig. 5 As figure 4, but for CFSS plate for
dffirent cutout ratios
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Table-2 : Comparison of non-dimensional flutter loads ycr and non-dimensional flutter
frequencies tr"r (c/b = 1.0 and v = 0.3)

Flutter Load Ycr Flutter Frequency ),"t

alb Present Adali l15l Deolasi [241 Present Adali Deolasi

1.0

0.5

51 .651

26.923

51.650

21.7r0

52.06

21.20

16.696

49.s67

16.6'.1

49.58

16.33

49.30

22

20

18

t0

14

1?

10

!

6



Table-3 : Non-dimensional flutter loads ys1 with different direction control parameters for C-F-S-S plate
subjected to partial follower edge load extending from the centre

Non-dimensional flutter load ys1

c/b ratio Load direction control parameter (<o )

09 0.8 rr'7 0.6 U5 0.4

r/b ratio = 0.0

0.2

0.4

0.6

0.8

1.0

24.8976

26.5356

29.9208

35.5992

46.6284

22.4592

24.2424

27.6276

32.8692

42.0420

20.5296

22.4952

25.7712

30.576

38.3292

19.1 100

27.1848

24.3516

28.9380

35.5992

18.1212

20.3tr2

23.5872

21.8460

33.6336

r7.6904

20.0928

23.4180

21.5184

32.54t6

r/b ratio = 0.1

0.2

0.4

0.6

0.8

1.0

21.1848

22.7136

25.6620

30.5160

40.1856

79.4376

2r.o156

23.9748

28.5012

36.3636

18.018

19.1652

22.6044

26.154

33.4152

16.9260

18.7824

27.6216

25.5528

31.3404

16.2708

18.2364

2r.0156

24.7884

29.9208

16.0524

78.1212

2r.0156

24.6192

29.1564

rlb ratio = 0.2

0.2

0.4

0.6

0.8

1.0

16.9260

18.2364

20.7480

24.6792

30.5160

t5.9432

11.3628

79.8144

23.5812

29.0472

15.0696

16.7016

79.2192

22.',t136

27.8460

14.5236

16.1616

18.6132

22.7676

26.8632

14.0868

15.8340

18.4548

21.8400

26.2080

74.1960

16.0524

18.7824

22.0584

2s.9896
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-r- r/b=0.0

-o- r/b=0.05

-a- r/b=0.10

-Y- r/b=0.20

z))

22.0

3 zt.s

& 21.0

B: 20.5

g 20.0

I ts.s

b 1e.0

c 18.5

! ta.o

'e, ns
g 17.0

! 16.5
c
2 1a.o

.t5.5

' 1'l-2

ov t1.o
dc()
3 ro.a
E

o
E 10.8

frc.9 10.4oc
d,
F* ro.z
Y
c,oz

't0.0

0.0 0.2 0.4 0.6 0.8 1.0

c/b ratio

6 Non dimensionalflutterfrequency (Real part) vs
load width raio for CFFF plate (material M I )

with dffirent r/b ratio

0.0 0.2 0..t 0.0 0.8

c/b ratio

Fig.7 Asfigure 6, butfor CFSS plate

1.0
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Effect of Load Direction Control and Damping
Parameter

Figure l(b) shows the plate subjected to applied fol-

lower force with directional control parameter rp' The

magnitude of the direction control parameter is varied

from 0 to 1. If e = 0 the effect of the normal component

of the follower force is zero and the problem is similar to

conservative load problem and only divergence instabili-

ties exist. For rp - 1, the force remains tangential to the

deformed state of the plate. The system exhibits flutter or

divergence types of instability based on the direction

control parameter, (p. In the analysis, free vibration, diver-
gence and flutter problems are solved simply by replacing

the matrix [KNs] in equation (11) by [KNc]q.

In the presence of damping, eigen frequencies of the

plates are complex quantities having positive imaginary

part initially (before flutter). When q-0, the two real

frequencies merge together into a pair of conjugate com-

plex frequency (), = Re (),) t Im (1")) at y"o to form a flutter

mode. As y is increased beyond y"., there is a rapid increase

in the imaginary parts of the natural frequencies. Since one

of the frequencies has a negative imaginary part, the plates

undergo strong flutter. Ifq + 0,thenaturalfrequenciesare

always complex for all levels of load y, and the two curves

for the real part of the frequencies do not merge, but
approach each other and initially both eigencurves have

positive imaginary parts. However, as Y is increased, the

imaginary part of the first frequency gradually changes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5

NOniimensinal load (y)

F ig. 8 Non-dimens ional frequency ( Real part) vsnon-dimen-

sional follower load with Q = 0.8 for CFFF plate for
dffirent r/b ratios

VOL.56, No.4

from positive to negative (crosses zero frequency line) at

y".. This phenomenon can be clearly observed later in the

investigation of the effect of damping in composite plates.

On this basis, the critical flutter loads have been found out

for isotropic square C-F-S-S plates with cutout and are

given in Table-4.

Figures 8 and 9 show the variation of real part of the

eigen frequency vs applied load for CFFF and CFSS plates

having different rib ratio with..load direction control pa-

rameter (rp) of 0.8 and 0.6 respectively subjected to end

follower force with clb = l. Table-3 shows the numerical

resultof CFSS plate subjectedto partial followeredge load

extending from the centre (Fig. 2(a)) with different load

direction control parameters having rib ratio equals to 0.0,

0.1 and 0.2. Comparing the numerical results. it is ob-

served that the critical flutter load is gradually increasing
with increasing load direction parameter.

Table-4 shows the numerical results for CFSS plate

with/without circular cutout subjected to uniformly dis-
tributed follower force (c/b = 1) with different load direc-

tion control parameter (<p) varying from 0.5 to 1.0 for the

different damping factors (n) 0.0, 0.02 and 0.1 respec-

tively. From the table it is noticed that the effect of
damping is very significant on the stability characteristics
of the plate with cutout and it shows the destabilizing
effect of damping. Further it is also noticed that the critical
flutter loads are gradually decreasing with decreasing

direction control parameter.

01020304050
Non-dimenelonal applied load (y)

Fig. 9 As figure 8, but for CFSS plate and g = 6.6
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Effect of Follower Force on Laminated Composite
Plates with Cut-outs

Table-5 shows numerical results of critical flutter load
and frequencies for laminated CFFF composite plate with
different cutout sizes having 0190, 0/9010,0/90/90/0 and

0/90/0/90 ply orientations respectively subjected to uni-
formly distributed follower edge load having c/b=1.
Figs.lO and 11 show the variation of flutter frequencies
with different cutout sizes for CFSS cross-ply and CFFF

e/- 0/e angle ply laminated plates. Fig.12 shows non-di-
mensional flutter load with load direction control parame-

ter for 0/90/0-laminated plate. From the figure it is
observed that the flutter load is gradually increasing with
direction control parameter and also observed that the

magnitude of the critical flutter load is changing signifi-
cantly with the cutout size ratio. Table-6 shows numerical
results for 0/90, 0/9010 and0l90/90/O laminated plate with
cutout subjected to follower edge load having c/b=I, and

damping parameters 0.0, 0.02 and 0.10. It is generally
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-f-0/90
+0/9cy0
-r-o90/900
+0/90/0190

0.00 0.05 0.10 0.15 0.20 0.25

r/b ratio

Fig. 1 0 Non-dimensional flutter frequency ( ReaI part) vs cur
out ratio for CFSS cross-ply laminated plate
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Table-4 : Effect of load direction control and damping parameter on non-dimensional flutter loads yg1

C-F-S-S plate with cutout sub.iected follower edge load with c/b = 1.0

r/b ratio Damping
factor (q )

Load direction control Darameter (o )

10 09 0.8 0.1 06 (r)

00
0.0

0.02

0.10

51.6516

47.3928

49.1400

46.6284

42.0420

43.5432

42.042

3t.t28
38.1 108

38.3292

33.6336

34.398

355992

31.23t2

3i.8864

33.6336

29.7024

30.4668

0.10

0.0

0.02

0.10

45.4212

42.8064

44.9904

40.1856

36.6912

31.8924

36.3636

32.5476

33.4152

33.4t52

29.7024

30.4668

31.3404

27.8460

28.6104

29.9208

26.754

27.5184

0.20

0.0

0.02

0.10

32.4324

28.1136

28.8288

30.576

26.3772

26.8632

29.0472

24.8976

25.4436

27.846

23.9748

24.3576

26.8632

23.2596

23.6964

26.208

23.0472

22.5812

Table-S : Non-dimensional flutter loads (yc. ) and non-dimensional frequency ()"s1) a laminated
cross-ply plate with different cutout sizes subjected to uniformly distributed follower load for C-F-F-F case

r/b ratio
0/90 0/90/0 0/90/90t0 o/90/0/90

Ycr 1", 1.. Ycr 1., Ycr ],.,
0.0 11.0 8.r34r 63.40 19.4585 57.80 18.5161 28.40 12.9914

0.05 10.6 7.9934 51.40 19.4144 51.40 20.1038 26.80 12.8424

0.10 9.40 7.8361 44.40 19.4164 40.20 21.0422 23.80 12.4354

0.15 8.20 1.6s90 33.60 19.2914 31.40 21.tt10 20.40 12.1867

0.20 7.00 7.5059 24.80 18.8523 25.20 20.8986 r'7.20 12.0019



I

236

noticed that the critical flutter load for 0/90/0 ply orienta-

tion having the highest value compared to other orienta-

tions considered in the analysis. Figs.13(a-b) and 14(a- b)

show variation ofreal and imaginary part ofthe frequency

with applied follower load for CFSS plate having cutout

ratios r/b equal to 0 and 0.1 respectively. From the

Figs.13(a) and 14(a), it is observed that for damping

parameter n=0, the two frequencies are merging with each

other and going to be complex conjugate after the flutter
is observed. For q + 0 the natural frequencies are always

complex. Initially both frequencies have positive imagi-

0.00 0.05 0 10 0.15 0.20

r/b ratio

Fig. 1 I Non-dimensional Jlutter frequency (Real part) vs cut-

out ratio for CFFF angle-ply laminated plate
having O/- 0/0 ply-orientation

VOL.56, No.4

nary parts. However as load increased, the imaginary part

ofthe frequency gradually changes from positive to nega-

tive and crosses the zero frequency line at y".. From the

Figs.i3(b) and 14(b) it is observed that the flutter in
presence of damping occurs at much lower load as com-
pared to without damping. The negative imaginary part of
the first natural frequency implies that there is negative

effective damping in the first mode for load y greater than

y... Thus damping has a destabilising effect on flutter
behaviour of olates under follower load.

0.5 0.0 0.7 0.8 0.9

Directlon control parametor (o)

Fig. 12 Non-dimensionalflutter load vs direction control pa-

rameterfor CFSS 0/90/0 plate with cutout
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Table-6 : Effect of damping on non-dimensional flutter loads fcr for a cross-ply plate
sub.iected to uniformly distributed follower edge load for C-F-S-S case

Ply-orientation Damping factor (n )

Non-dimensional critical fl utter load

Cut-out size ratio (r/b)

00 0.05 0.10 0.15 0.20

0/90

0.0

0.02

0.10

14.6

12.8

l-)-L

13.8

72.0

12.2

IT.4

r0.2

10.4

9.6

8.4

8.6

8.0

1.0

7.2

0/90/0

0.0

0.02

0.10

61.0

42.8

43.2

58.6

38.2

38.6

45.6

30.2

30.4

34.6

22.6

22.8

24.8

16.0

16. i

0/90t90t0

0.0

0.02

0.10

6r.4
A1 a

43.6

54.2

38.8

39.2

43.0

37.2

31.6

33.8
.rA a

z+.o

25.8

78.2

18.3
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o4a121820212832
Nondkrienslonal lpplied load (r)

Figrue l3(a) Real part vs Non-dimensional load

Nondimensbnal applied load (7)

Figrxe l3O) lmaginary part vs. Non-dimensional load

Fig. I3 Non-dimensional frequency vs non-dimensional fol-
lower loadfor CFSS 45/-45/45 angle-ply plate having r/b = 0

with damping parameters.

Conclusions

The results from dynamic instability behaviour of
laminated composite plates subjected to partially distrib-
uted follower loading can be summarized as follows:

The follower loading on the free edges may undergo
flutter type of instability beyond a certain value of the
follower load due to coalescence of two frequencies into
a complex conjugate pair. Flutter is observed to be more
common than divergence under follower type of loading.
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030c1215it212127
nondimengkrnal appliec load (fl

Figue l4(a) Real part vs Non-dimensional load

0610152025
Nondimenelonal applied load (7)

Figue la(b) Imaginary part vs. Nondimensional load

Fig. 14 Asfigure 13, butfor r/b = 0.1

The cutout is very much influences on the dynamic
stability of both isotropic and laminated plates. The mag-
nitude of the flutter load is gradually decreasing with the
increasing cutout size.

The ply-orientation, load bandwidth and type of load
conditions have a significant influence on the flutter and
divergence characteristics of both isotropic and laminated
plate having different boundary conditions.
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Damping in the system is perceived to have significant
effect on the flutter behaviour of both isotropic and lami-
nated plates with cutouts. In most cases the damping effect
gives destabilizing behaviour, making the plate prone to
flutter. The destabilizing effect of damping is due to the

fact that the effective damping becomes negative beyond

certain load in one of the two modes, which merge together
giving rise to the flutter phenomenon.

As the loading is changed from conservative to non-

conservative (follower type) loading by changing the load
direction control parameter, the divergence instabilities
become less prominent and flutter instabilities initiate,
indicating dynamic instability phenomena. The effect of
direction control parameter with damping significantly
affects the critical load depending on the type of material
and type of ply orientation.
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