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Abstract

This paper deals with nonlinear asymmetric dynamic buckling of clamped isotropic/anisot-
ropic spherical shells under suddenly applied pressure loads. Theformulation is based on

Jirst-order shear deformation theory and Lagrange's equation of motion. The nonlinearity due
to Jinite deformation of the shell considering von Karman's assumptions is included in the

formulation. The buckling loads are obtained through dynamic response history using New-
mark's numerical integration scheme coupled with a Newton-Raphson iterqtion technique. An
axisymmetric curved shell element is used to investigate the dynamic characteristics of the
spherical caps. The pressure value beyond which the maximum average displacernent response
shows signiJicant growth rate in the time history of the shell structure is considered as citical
dynamic load. Detailed numerical results are presented to highlight the influences of shell
geometric parameter, orthotropicity, ply-angle, number oflayers and asymmetric mode on the
critical load ofspherical caps.

Keywords : Dynamic buckling, Asymmetric, Isotropic, Angle-ply, Cross-Ply, Spherical Caps,
Nonlinear response

Introduction

Thin spherical shells have been interesting topics in
structural engineering not only for their widespread appli-
cations but also the complicated stability problems. These
shells often subjected to snap-through buckling. Buckling
analysis of such shells under dynamic loads has received
considerable attention in tJre literature. It is known, in
general, that shells subjectedto dynamically applied loads
usually buckle at load levels that are lower than the corre-
sponding quasi-static buckling load.

The available work on axisymmetric dynamic buck-
ling behavior of spherical shells is mainly concerned with
isotropic case subjectedto the step pressure load ofinfinite
dwation. Budiansky and Roth [] have analyzed the
problem employing the Galerkin method whereas Simit-
ses [2] adopted Ntz-Galerkin procedure. Haung [3],
Stephens and Fulton [4], and Ball and Burt [5] have
investigated using the finite difference scheme while
Stricklin and Martinez [6] utilized more efficient finite
element procedure. The effect of geomehic imperfection
on the dynamic buckling load, by employing buckling

criterion based on the displacement response, is examined
by Kao and Perrone [7], and Kao [8] based on finite
difference method whereas Saigal et.al [9] and Yang and
Liaw [0] analyzed using finite element technique. Lock
et.al [1] havs carried out experimental study on the
buckling of spherical caps.

Quite often, the asymmetric modes of these shells may
be excited due to the introduction of slight deviation in
perfect axisymmetric loading, geometric imperfection
and/or initial displacemenVvelocity to the shells, leading
to asymmetric type ofbuckling behavior. The buckling of
isotropic spherical shell under such modes has received
very limited attention in the literature. Ball and Burt [5],
Shicklin and Martinez [6] and Stricklin et.al [12] have
assumed imperfection in the step load to excite the asym-
metric modes and presented results for a shell geometry
with few asymmetric modes. Klosner and Longhitano

[3], while obtaining the response of dynamically loaded
spherical shells, have considered an asymmetric initial
velocity to the shell but the numerical results are not
presented for the dynamic buckling study. Akkas Ila] has
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examined the asymmetric dynamic buckling behavior of
spherical caps by perturbing few asymmetric modes

through the initial displacement and presented very few
results based on the response of asymmetric part of the

displacement. It may be infered that the effect of asym-

metric modes of spherical shell with step load of inhnite
duration on the dynamic buckling characteristics could not

be well established with a few available work in the

literature in comparison with those of axisymmetric dy-
namic buckling case.

In recent years, advanced composite materials have

found rapid growth in engineering structural applications.

However, the complexity of the analysis due to the inher-
ent directional properties of the composite materials has

limited the study to axisymmetric dynamic buckling be-

havior of single-layered orthotropic spherical case using

classical lamination theory [5-18], except the work of
Ganapathi and Varadan [19]. Alwar and Sekhar Reddy

[15], and Dumir et.aI ll7l have examined the problem

using the method of orthogonal collocation whereas Chao

and Lin I I 8] have obtained the critical loads based on finite
difference scheme including the influence of geometric

imperfection. Ganapathi and Varadan I 19] have solved the

problem employing shear deformation theory coupled

with finite element technique. However, to author's
knowledge, work on the asymmetric dynamic buckling
behavior of laminated composite spherical shells under

extemally applied pressure seems to be scarce in the

literature.

In the present work, a three-noded shear flexible axi-
symmetric curved shell element based on semi-analytical
approach and the field-consistency principle [20, 2l] is

extended to analyze the asymmetric dynamic buckling of
isotropic/anisotropic spherical caps under extemally ap-

plied pressure load. Geometric nonlinearity is assumed in
the present study using von Karman's strain-displacement

relations. The nonlinear goveming equations derived are

solved employing Newmark numerical integration
method in conjunction with the modified Newton-Raph-
son iteration scheme. For axisymmetric case, the dynamic
buckling pressure is defined as the pressure corresponding

to a sudden jump in the maximum average displacement

in the time history of the shell struchue U,221. However,

the load associated with the threshold value ofpressure
beyond which the asymmetric component of displacement

response of shell shows significant groMh rate with time

is taken as the critical load for asymmetric buckling case

I14,231. A detailed investigation is carried out to bring out

the influences of geometric parameters, orthoffopicity,
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lamination scheme, ply-angle and different asymmetric
modes of excitation on the dynamic buckling charac-

teristics of clamped spherical caps.

Formulation

An axisymmehic laminated composite shell of revo-

lution is considered with the coordinates s, 0 and z along

the meridional, circumferential and radial/thickness direc-

tions, respectively. The displacements u,v,w at a points

(s,O,z) from the median surface are expressed as ftmc-
tions of middle-surface displacements tto,vo and w and

independent rotations p" and p6 of the meridional and

hoop sections, respectively, as

u (s,0, z, t) = uo(s, 0, r) + z p" (s, 0, t)

v (s, 0, z, t) =vo(s, 0, l) +z p, (s, 0, t)

w (s, 0, z, t) - w (s, 0, l) (l)

where I is the time.

Using the semi-analytical approach, uovo,w, p" and

p9 are represented by a Fourier series in the circumferen-

tial angle 0. For the nth harmonic, these can be written as

o
uo (s,9, l) = u o 6, l)

vo (s, 0, t1=ti$, t)

w (s,0, t)=wt (s,t)
2

+\1.",(s, /) cos (rn O) + rsi (s, r) sin (in e)]
FI

F, {s, e, r) = Fi 1", r)

F. {", e, r) = Fi {", r)
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The above displacement variations in the circumferen-
tial directisn are chosen according to the physics ofthe
large amplitude asymmetric vibrations of shells of revo-
lution i.e. participation of axisymmetric mode and higher
asymmetric modes 124-261. Additional terms in the in-
plane displacements, compared to radial displacement, are

added to keep the nonlinear membrane strains consistent.

Using von Karman's assumption for moderately large
deformation, Green's strains can be written in terms of
mid-plane deformations as,

DYNAMIC BUCKLING OF SPHERICAL CAPS

Fe sin q

dw dw

where r,R andQ are the radius of theparallel circle, radius
of the meridional circle and angle made by the tangent at
any point in the shell with the axis of revolution.

If {N} represents the stress resultants
(N"", Ngg , Nse ) and lUl the moment resultants

(Mu, Mgg, Mrg), one can relate these to membrane
trl lMrl. | |strains itol ( = lEij + Id;"|) and bending strains trrl

through the constitutive relations as

Frl= trt {'o }* t t {+ } -u lul=p1 {'o }* u {', }' '(s)

where [A], [D] and [B] are extensional, bending and
bending-extensional coupling stiftress coeffi cients matri-
ces of the composite laminate. Similarly, the transverse
shear force {Q} representing the quantities (Qr",Qg,)
are related to the transverse shear strains 

{e" } 
throu8h the

constitutive relation as

{o }= tq {'" } (6)' 'tsJ

where [E] is the transverse shear stiffrress coeffrcients
matrix of the laminate.

For a composite laminate of thickness h, consisting of
N layers with stacking angles Q, (i = l, ..., N) and layer

thicknesses hi ( i = l, ..., N ), the necessary expressions to

compute the stiffness coefficients, available in the litera-
ture [28] are used here.

The potential energy frrnctional t{6) is given by,

-lt-rrT,,T,,Tu(6 ) = t J 

^l!,l'tAtl%l+ 
{e,}'ral {'r} 

. {'/'rar 1',1

dA-[awdA (1)
A

where 6 is the vector ofdegrees offreedom associated to
the displacement field in a finite element discretisation and

4 is the applied extemal pressure load.

The kinetic energy ofthe shell is given by

. o3)i,

t7

where, the membrane strains {ej}, benains strains{e6},

shear strains 
{er}and 

nonlinear in-plane strains {efJ in the

Eq. (3) are written as [7]

aB du'.t. o

a"'Ras
F"sinq, dpr, uosinQ

, - rag' R'

I duo . &o.oro , aF" , aFe
T-T

R rdO Es r rd9 Es

(3)

2

+G+)
2

rffi)

{',} =

B +Qr

{'J = 
"" l; vocosQ ' {#} =

Pe-rao

. {'r}b {.r} 
. {."}'t {."}]

= ilnV?:. ;i. ;? 
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h/^ h/.,/ a a'.
wherep= l, p dz...and ...t=| . pzz dz andpis' J -rt' '-h/z'
the mass density. The dot over the variable denotes deriva-
tive with respect to time.

Following the procedwe given in the work of Ra-
jasekaran et.al 1291, the potential energy functional U
given in Eq.(7) is rewritten as

, ,T.
u(6)= lAl'l1rtz1x1+[(/6) tlir(6)] +(1/r2) tn talt l{0}"L - r ' )'

-.7
= {sl' {F} (e)

where [K] is the linear stiffness matrix, [N11 and [N2J are

non-linear stiffness matrices linearly and quadratically

dependent on the field variables, respectively and {F} is
the load vector. Substituting Eqs. (8) and (9) in Lagrange's

equation of motion, the goveming equation for the shell

are obtained as :

where [M] is the mass matrix.

The Eq. (10) is solved using the implicit method [30].
In this method, equilibrium conditions are considered at

the same time step for which solution is sought. If the

solution is known at time t and one wishes to obtain the

displacements, etc. at time / + A l, then the equilibrium

equations considered at time t + L t are given as

tra {s},., + ttN (s)l {6}1,*, = Irl,* * (l l)

t.'l
where 16|, * o , and {6}, * o , are the vsctors of the nodal

accelerations and displacements at time / + A I respec-

tively. [[N(6)] 16]1,+^, is the internal force vector at

time / * A, t and is given as

t tN(s)l {6}l+ar= ( t tKl + (l/2) tNr (6)

+ (r/3) tN, (6)l I {o}),*^l, (r2)

In developing equations for the implicit integration,

the internal forces tN(S)l {6} at the time t+Lt are

written in terms of the internal forces at time l, by using

the tangent stiffness approach, as

t tN(6)l {5}1,*r,=ttN(S)l {Oh,*t(r(S)1,{A6}, (13)
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where [K, (5)]r = ttKl + tN U + [N2]l is the tangent

stiffness matrix ana {l 6} = isL * o , - {A},. suurtitoti"g

Eq. (13) into Eq.(l l), one obtains the goveming equation

at t]-Ltas

tMl {6 },o, + 1r. (s)J, {^ d }= {F l,*, - tN(6)l io }1, , tr+)

To improve the solution accwacy and to avoid numerical
instabilities, it is necessary to employ iteration within each

time, thus maintaining the equilibrium.

The non-linear equations obtained by the above proce-

dure are solved by the Newmark's numerical integration

method. Equilibrium is achieved for each time step

through modified Newton-Raphson iteration until the con-

vergence criteria [31] are satisfied within the specific

tolerance limit of less than one percent.

Dynamic Buckling Criterion

Criteria for the static buckling of axisymmetric shal-

low spherical shell are well defined whereas it is not so for
the dynamic case. It requires the evaluation ofthe transient

response of the shell for different load amplitudes. How-

ever, the dynamic buckling criterion suggested by Budi-

ansky and Roth [] is generally accepted because the

results obtained by various investigators by different nu-

merical techniques using the criterion are in reasonable

agreement with each other. This criterion is based on the

plots of the peak nondimensional average displacement in
the time history of the structure with respect to the ampli-

tude ofthe pressure load. The average displacement A is

defined as

rw dr
[=

I rzd,
0

The numerator is the volume generated by the shell

deformation and the denominator corresponds to the origi-
nal volume under the spherical cap. Z is the height of a

point on the middle-surface of the shell. There is a load

range where a sharp jump in peak average displacement

occurs for a small change in load magnitude. The inflec-

tion point of the load-deflection curve is considered as the

dynamic buckling load.
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For asymmetric dynamic buckling analysis of spheri-
cal shells, there is no well-understood and generally ac-
cepted criterion available so far. Furthermore, the
available numerical results are very few to obtain a rea-
sonable conclusion on the criterion, compared to those of
axisymmetric case. The criterion adopted by Akkas [14]
and Fulton and Barton [23] is somewhat similar to that of
axisymmetric case. It is based on the plots of the peak
nondimensional average asymmetric component of the

displacement in the time history of the structure against
the amplitude of the pressure load. However, there is no
occurrence ofa suddenjump in peak average displacement
associated with asymmetric part of the deformation over
a load range. Hence, the load corresponding to the inflec-
tion point on the load-deflection curve beyond which the
asymmetric part of the displacement response reveals
significant groMh rate is considered as dynamic buckling
load.

Element Description

The laminated axi-symmetric shell element employed
here is a Co continuous shear flexible curved element with
three nodes. It needs thifty{hree degrees offreedoms per

node for the filed variables (us, vsr w, p" and p6 ) described

in Eq.(2).

If the interpolation functions for three-noded element
are used directly to interpolate the five field variables uo,

vo, wr p" and pg in deriving the transverse shear and

membrane strains, the element will lock and show oscil-
lations in the shear and membrane stresses. Field consis-
tency requires that the membrane and transverse shear
strains must be interpolated in a consistent manner. Thus,
p" term in the expression for {eJ 

given in Eq. (4) has to be
fr 1

consistent with field function l*A l as stiown in the works

of Balakrishna and Sarma t20!:tl*p"thi et.al [21], and
Prathap and Ramesh Babu [32]. Similarly the w and (uo,

vo) terms in the expression of {ej} (first and third strain

components) have to be consistent with the field functions
duo . duo

;land ;j, respectively. This is achieved by using the

field redistributed substitute shape functions to interpolate
those specific terms that must be consistent as described
by Prathap and Ramesh Babu [32]. The element derived
in this fashion behaves very well for both thick and thin
situations, and permits the greater flexibility in the choice
of integration order for the energy terms. It has good
convergence and has no spurious rigid modes. For the sake

of brevity, the development and the performance of the
element are omitted, as they are available in the literature
[20,21,32].

Results and Discussion

The study here deals with asymmetric dynamic buck-
ling behavior of clamped isotropic/anisotropic spherical
caps. Since the finite element used is based on the field
consistency approach, an exact integration is employed to
evaluate all the strain energy terms. The shear correction
factor which is required in a first-order theory to account
for the variation oftransverse shear stresses, is taken as

5/6. For the present analysis, based on progressive mesh
refinement, 15 elements idealization is found to be ade-
quate in modeling the spherical caps. The initial condi-
tions for the nonlinear asymmetric dynamic rcsponse
analysis are considered as non-zero values for displace-
ments and zero values for the velocities. The initial dis-
placement vectors are assumed to be proportional to the
normalized linear flexural asymmetric mode vectors and
then scaledup bymultiplyingthe mode vectors withavery
small value for the perturbation of asymmetric mode of
the spherical shell. From the dynamic response curves, the
load amplitudes and the corresponding maximum average
displacements are obtained for dpplying the buckling cri-
terion. The constants cr and p (controlling parameters for
stability and accuracy of the solution) in the Newmark's
integration are taken as 0.5 and 0.25, which correspond to
the unconditionally stable scheme in linearanalysis. Since
there is no estimate of the time step for the non-linear
dynamic analysis available in the literature, the critical
time step of a conditionally stable finite diflerence
schemes [33, 34] is introduced as a guide and a conver-
gence study was conducted to select a time step which
yields a stable and accurate solution.

The material properties assumed in the present analy-
sis are

EL/E, =25.0, Gr/Er =0.5, GlEr =0.2,

vr, =0.25, Er =l GPa, p= 1600 Kg/m3

where E, G and v are Young's modulus, shear modulus
and Poisson's ratio. Subscripts L and T are the longitudi-
nal and transverse directions respectively with respect to
the fibres. All the layers are of equal thickness. The
ply-angles are measured with respect to the meridional
axis. Results of non-dimensional dynamic pressure Pcr,
are presented for isotropic, cross-and angle-ply shells for



Here, H, a are the central shell rise and base radius,
respectively. For the chosen shell parameter and lamina-
tion scheme, the dynamic buckling study is conducted for
step loading ofinfinite duration. The length ofresponse
calculation time

7," = zlz (r -vLr r-r)"' 6l

in the present study is varied between 1 and 2 with the

criterion that in the neighborhood of the buckling, t is
large enough to allow deflection-time curyes to fully de-
velop. The time step selected, based on the convergence

study, is I t = 0.002. The values selected for t and 6 t are

of same order as considered in the work of Ball and Burt

[5], Kao and Perrone [7] and Chao and Lin [8].

Before proceeding for the detailed study of the non-

linear asymmetric dynamic buckling characteristics, the

formulation developed herein is validated against the ax-

isymmetric buckling of isotropic spherical shells sub-
jected to uniform external pressure of inf,rnite dwation.
The nonlinear axisymmetric dynamic response history

with time forthe geometric shellparameter?u=7 is shown
in Fig.l for different externally appliedBressure. Further,

using such plots, the variation of maximum average dis-

placement with applied load obtained for l,=7, is also

highlighted in Fig.I for predicting the critical load. The

critical dynamic pressure calculated for various geometri-

cal parameter values are presented in Fig.2 along with
those of available analytical/numerical results 13, 4, 15,

19] and they are, in general, found to be in good agree-

ment.

Next, for the isotropic spherical caps, considering dif-
ferent values for the geometrical parameter, l, , the dy-
namic buckling loads are evaluated based on asymmetric
nonlinear dynamic response of shells subjected to exter-
nally applied pressure. This study is carried out perturbing
the different asymmetric modes (circumferential wave
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number, n). Fig.3 exhibits the dynamic response pattern

of average asymmetric displacement component of shell

(7,"=7 ) with time and in turn, the variation of maximum
average displacement with applied loads. The influence of
various asymmetric modes on the critical dynamic load is

also investigated and depicted in Fig.4. It is revealed from
Fig.4 that the results available in the literature [5, 14] are

fairly in good agreement with the present solutions and the

buckling criterion used in the present study is based on the
growth rate of asymmetric mode response with time.

However, forl, :7.5 case, the present model predicts high
value for the critical load than those of Akkas !41, and is

more than those of axisvmmetric case. Furthermore. it can

o0 0,1 o.2 03 0.4 0.s 0,6 0.7 0J |I9
Non dimetrConl lid, t

Fig. I Average disphcement versus nondimensional time for
isotropic shpertcal cap ()u=7, Axisymmetric case)
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x nd.Et
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Fig. 2 Comparision of oxisymmetric nondimensional citical
loadfor isotropic spherical cap
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be seen from Fig.4 that this particular shell appears to be

buckled in axisymmetric mode of vibration rather than in
asymmetric deformation as pointed out in the work of
Stricklin and Martinez [6] while examining the asymmet-
ric mode ofbuckling. The predicted axisymmetric critical
load is fairly in good agreement with the available experi-
mental result I l]. It is further noticed from Fig.4 that the

values of critical load corresponding to 7,,: 6 and 12

obtained by Ball and Burt [5] are in very close agreement

with those of present results pertaining to asymmetric
mode n:3. However, the mode numbers reported in
Ref.[5] for the shell parameter 7v: 6 and 12 are n:2, and
5 or 6, respectively. It can be observed from Fig.4 that the

axisymmetric type of dynamic buckling occurs for very
shallow shells, and also for shell parameters in the transi-

tion region between moderately shallow and deep cases.

The asymmetric buckling deformation, in general, domi-
nates the moderately shallow shells under lower asymmet-
ric modes and deep shell regions under higher modes. It
can be further inferred that, among the asymmetric cases,

the difference in the predicted critical loads is high for the
shell geometrical parameter in the shallow region and it
reduces with the increase in the value of shell parameter.

It is however, largely depends on the perhrbation of
asymmetric vibration mode.

Next, for the laminated eight-layered angle-ply

(0"/{ o)4 
spherical caps considering different values for

the geometrical parameter 1,, the dynamic buckling loads

are evaluated based on asymmetric nonlinear dynamic
response ofshells subjected to externally applied pressure.

&E,05

3

f o.u.oo
t,
a
c

Fig. 3 Average displacemen! versus nondimensional timefor
isotropic shpeical cap ()u:7, Asymmetic case with n:3)
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The influenee ofvarious asymmetric modes (circumferen-
tial wave number, n) on the critical dynamic load is
investigated and highlighted in Figs.5-7 forvarious angle-
ply laminates. It is observed from Fig.5 that, for low
angle-ply case (15o) considered here, the lowest critical
load of very shallow shell corresponds to axisymmetric
mode. But, the asymmetric mode of buckling behavior
dominates the stability of deep spherical caps. However,
the differences in the critical loads predicted among dif-
ferent asymmetric mode cases decrease with increase in
the geometric parameter value. For 30o angle-ply case, it
is viewed from Fig.6 that, irrespective of geometric shell
parameter values, the asymmetric mode produces the low-
est critical load. It is also noticed from Fig.6 that the value
of critical pressure signihcantly depends on the type of

s 6 t *,o$,*,,y*."1",".,r 10 17 l2

Fig. 4 Nondimensional critical load (or Axisymmetic and
Asymetric cases) versus shell geometry

for isotropic shperical cap

Fig. 5 Nondim"^r"rilmrm;L shett geometry
parameter for eight -layared angle-ply

Q5"/-l 5")a shperical caps
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*.\
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i\r. \\.\ \\

\r,
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Fig. 6 Nondimensional critical load versus shell geometry
parameter for eight-layered angle-ply

(j 0" /- 3 0") a sp herica I cap s

Sb.n GaEFy F.mEr,.l,

7 Nondimensional critical load versus shell geomelry
parameter for eight-layered angle-ply

(45"/-45")a shperical caps
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9 Nondimensional critical load versus shell geometry
parameter for twoJayered angle-ply

(30"/-30) shpeical caps
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Fig. 10 Nondimensional critical load versus shell geometry
parameter fo r twoJayered cros s-ply

(0" /9 0" ) s hp erica I cap s

asymmetric disturbance. Furthermore, it can be noted that

the shallow shells buckle at less load corresponding to
lower circumferential mode numbers whereas the deep

shells exhibit loss of stability easily at higher mode num-
bers. For spherical caps with higherply-angle cases (45o),

it is infened from Fig.7 that the failure mode pertaining to

the least critical pressure corresponds to axisymmetric
one. It is also revealed from these figures that the variation
of critical loads related to different asymmetric modes of
perturbation is significant, irespective of the type of
spherical caps. For the layered angle-ply shells considered
here, it is brought out from Figs.5-7 that the shell geome-

tries with high ply-angle are prone to buckle at lowest

critical loads. It is worthwhile to mention here that the

shallow shells with certain ply-angles may not fail under
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asymmetric modes of large circumferential wave number,
as the shell response characteristics do not reveal any
significant growth with time. Similar study is also carried
out for cross-ply case. The dynamic buckling values ob-
tained for eight-layered cross-ply shells are presented in
Fig.8. It can be seen from these investigations that the
variation of buckling load of cross-ply shells is qualita-
tively similar to those of low angle-ply laminates.

The effect ofbending-stretching coupling due to lami-
nation scheme is also examined and brought out in Figs.9
and l0 for angle and cross-ply spherical caps. The pre-
dicted asymmetric dynamic critical loads for two-layered
case are, in general, less and the buckling behavior is
qualitatively similar to those of eight-layered shells. In
general, it can be opined that the lowest critical dynamic
buckling load of a given spherical cap significantly de-
pends on its geometrical parameter value, ply-angle and
type of mode of excitation.

Conclusions

Asymmetric dynamic buckling of clamped iso-
tropic/anisotropic spherical caps subjected to externally
applied pressure has been investigated through nonlinear
transient dynamic response analysis. A three-noded axi-
symmetric curved shell element based on field consistency
principle has been employed for this purpose. Numerical
results obtained here for an isotropic case are found to be
fairly in good agreement with the previous findings.
From the detailed study, the following observations can
be made :

l. The critical load decreases with increase in the value
of orthotropicity, ELlET.

For low angle-ply case, the difference in the buckling
values predicted among various asymmetdc modes
decreases rapidly with increase in the value of the
shell parameter and the lowest critical pressure cor-
responds to either axisymmetric or asymmetric
modes depending on the shell parameter value.

With increase in ply-angle, the influence of asym-
metric mode on the dynamic buckling load is signifi-
cant for all the shell parameter but the axisymmetric
buckling mode yields the lowest critical values.

Asymmetric buckling at large circumferential wave
numbers is not obseryed for shallow shells with
certain ply-angles.

The shells with higher lamination angles are prone to
buckle at lower critical loads.

5.
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The bending-stretching coupling due to lay-up, in
general, reduces the buckling loads and the asymrnet-
ric buckling mode dominates the failure of various
shell geometric parameters considered here.

Shallow shells exhibits the onset of asymmetric
buckling at lower circumferential mode numbers
whereas the occurrence of instability of deep shells
associates with the higher mode number.
For a given spherical cap, the critical dynamic buck-
ling load depends significantly on the initial condi-
tions, geometrical parameter and ply-angle.
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