
A SIMPLE, CORRECT PEDAGOGICAL PRESENTATION OF

AIRPLANE LONGITUDINAL DYNAMICS

Abstract

Various shortcomings and inaccuracies in the existing approach and presentation of airplane

flight dynamics in pedagogy have been identified. An improved pedagogical presentation is

offered which is clean - uses the two timescales in longitudinal dynamics to derive short period

and phugoid mode parameters, simple - starts with the longitudinal dynamics equations rather

than the complete six degree of freedom formulation, and correct - uses a physically correct

model of the dynamic (rate) derivatives and employs the concept of a static residual in deriving

the slower (phugoid) mode approximations. The redundant and confusing concepts of dimen-

sional derivatives and static stability are junked. A companion paper presents a similar

approach to the lateral-directional dynamics.

Introduction

Beginning with the early work by Bryan [1], the equa-

tions of rigid airplane flight dynamics, the analysis of

airplane small perturbations about a trim state, and the

modeling of aerodynamic forces under small perturbations

have been passed down and followed virtually unchanged

for nearly a century. The approach, analysis procedure and

the results therefrom have been enshrined in classic flight

dynamics textbooks such as those by Perkins and Hage

[2], Etkin [3], Seckel [4] and Roskam [5], which have been

used to teach several generations of students in the class-

room. The same material is found in texts with an empha-

sis on flight control and simulation, for example,

Blakelock [6], McRuer, Ashkenas and Graham [7],

McLean [8], Stevens and Lewis [9] and Nelson [10]. A

number of other textbooks have since appeared on the

subject, such as Pamadi [11], Phillips [12] and Stengel

[13]. Without exception, all of them contain the same

material in roughly the same sequence - definition of

various axes and transformations between them, deriva-

tion of the 6-degree of freedom equations of motion for a

rigid airplane, selection of a trim state, usually straight and

level flight, small perturbations and the derivation of

linearized equations about the chosen trim state, decou-

pling of the linearized dynamics into lateral and longitu-

dinal sets, reduction of the decoupled dynamics into the

airplane modes and a discussion of stability (termed dy-

namic stability) based on the eigenvalues (equivalently,

the frequency and damping, or the time-to-half/time-to-

double amplitude) of the various modes (short period,

phugoid, roll, dutch roll, and spiral). Separately, a notion

of static stability is introduced which leads to a discussion

of the three aerodynamic derivatives - Cmα (longitudinal

static stability), Cnβ (directional static stability), and Clβ
(lateral static stability), and subsequently to elevator, rud-

der and aileron control.

Over the years, it has been widely recognized that this

traditional approach and presentation has some technical

as well as pedagogical shortcomings.

• Students usually find the axes transformations and the

derivation of the 6-degree of freedom equations of

motion dreary and complex. This causes some of them

to turn off the subject early in the course. Oddly

enough, the 6-degree of freedom equations are then

mostly used only to study longitudinal and lateral

small-perturbation dynamics about a straight and level

flight trim - something that could have been done

without all the labor and time invested in and the dislike
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engendered by the derivation of the complete equations

of motion.

• The small-perturbation aerodynamic model is first

written in terms of the dimensional aerodynamic de-

rivatives. Later, the dimensional derivatives are ex-

pressed in terms of non-dimensional aerodynamic

derivatives, which are more natural aerodynamic quan-

tities. For instance, the non-dimensional CLα is more

natural and understandable than the dimensional Zw. It

makes sense to discard the dimensional derivatives and

directly write the aerodynamic model in terms of the

non-dimensional derivatives. There is also a more se-

rious error that has crept in due to the use of the

dimensional derivatives, as we see next.

• The dimensional derivatives were introduced by Bryan

[1] in 1911 on purely mathematical grounds, without

regard to the aerodynamics. Later the focus was on

representing these dimensional derivatives correctly in

terms of the non-dimensional aerodynamic derivatives.

The definition of the dimensional derivatives itself

became a fait accompli and was never questioned until

recently (Ananthkrishnan [14], and Raghavan and

Ananthkrishnan [15]). It turns out the rate derivative

(also called dynamic derivative) terms as they are tra-

ditionally represented in the aerodynamic model do not

agree with standard aerodynamic theory. There ought

to be two terms - one depending on the relative angular

velocity of the airplane with respect to the wind, and

the second a function of the wind angular velocity (also

called flow curvature effect  [21]). Instead, the tradi-

tional aerodynamic model only provides for a single

dimensional derivative (along each axis). Even when

the dimensional derivative is transcribed correctly in

terms of the non-dimensional aerodynamic derivative,

it is multiplied in the model by the wrong variable -

airplane angular velocity instead of the difference be-

tween the airplane and wind angular velocities. This

leads to a grotesque situation as for example below.

Consider the derivative Cmq, also called the pitch

damping derivative. It is traditionally modeled as

Cmq∆qb, where ∆qb is the perturbed airplane pitch rate.

One may equivalently write this term as follows, where

∆ qw  is the velocity vector (wind axis) angular rate in

pitch: Cmq ∆ qb = Cmq (∆ qb − ∆ qw ) + Cmq ∆ qw .

The first term on the right-hand side is the correct

relative angular velocity effect and the second one is an

unintentional and incorrect flow curvature effect that

appears irrespective of the airplane configuration. In

fact, the flow curvature effect in pitching motion is

usually negligible except in special cases such as air-

planes with T-tails. The incorrect second term need-

lessly couples the relative-angular-velocity-dominant

mode (short period) with the flow-curvature-dominant

mode (phugoid) and introduces errors in both their

models. Likewise for the relative-angular-velocity-

dominant dutch roll mode and its counterpart flow-cur-

vature-dominant spiral mode in the lateral-directional

dynamics. Yet this century-old error continues to per-

meate every textbook in the market today.

• The notion of static stability, perhaps unique to the field

of flight dynamics, is the cause of much confusion.

Possibly in an age when the theory of stability of

dynamic systems was not widespread among engineers

and analytical methods were the only recourse, one

could have justified the use of an approximation such

as static stability. To carry it forward to the 21
st

 century

is a bit ludicrous. No textbook connects up the concepts

of static and dynamic stability, possibly because they

are not always compatible. For example, under the

traditional model, it is possible for a mode to be stati-

cally unstable and yet dynamically stable - a feat im-

possible in the annals of mathematics, yet one that

generations of flight dynamicists have been handwav-

ing away. The discrepancy can be resolved to some

extent by fixing the error in the aerodynamic model

discussed immediately above. However, the saner op-

tion is to drop the notion of static stability entirely and

stick to a single concept of (dynamic) stability, com-

mon with other scientific disciplines.

• The process of obtaining literal approximations to the

various airplane dynamic modes, and thence their fre-

quency and damping, or time-to-half/time-to-double,

causes some disquiet. The derivation is frankly ad hoc

and further most authors admit that the approximations

to the phugoid, dutch roll and spiral modes are poor and

not to be relied upon. This could partly be due to the

error in the aerodynamic model as discussed above.

However, it was shown by Ananthkrishnan and Unnik-

rishnan [16], and Ananthkrishnan and Ramadevi [17]

that, subject to the aerodynamic model being correct,

accurate literal approximations to the flight dynamic

modes could be obtained by following a proper multi-

ple timescale approach. The key is to recognize that a

static residual of the faster mode participates in the

dynamics at the slower timescale. While the existence

of disparate timescales between the modes has been

generally acknowledged, no textbook explicitly writes

the timescales down nor uses them to separate the

different modes. As for the corrected literal approxima-
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tions, no textbook bar one (Stevens and Lewis [9]) has

bothered to incorporate them over the past decade.

• Lastly, in this age of computation, students must be

introduced to the computational tools available and

used in industry. The standard tool for flight dynamic

analysis today is the bifurcation and continuation

method. While bifurcation methods originally entered

the picture as a specialized nonlinear, especially high

angle of attack, analysis tool, today they may be used

for flight performance and stability analysis across all

segments of the flight envelop (Ananthkrishnan and

Sinha [18], Paranjape, Ananthkrishnan and Sinha

[19]). In fact, flight dynamics has been an early and

notably successful application area of bifurcation the-

ory. The introduction of bifurcation methods with real-

life airplane data will provide students with a flavor of

industrial practice as well as expose them to life beyond

the sanitized, linear domain that textbooks must per-

force focus on. For instance, many modern military

airplanes stall around 30-40 deg angle of attack, not at

the 15-18 deg range that is touted by textbooks.

The present paper is the outcome of the authors’ expe-

rience in teaching flight dynamics for over two decades.

It is our belief that the traditional presentation and contents

of a course in flight dynamics must be overhauled and

improved in keeping with recent revelations and the re-

quirement to tie up the theory with real-life examples and

industrial practice. While this paper focuses on the longi-

tudinal dynamics, a companion paper presents our ap-

proach to the lateral-directional dynamics. The papers

form the basis for a new textbook on flight dynamics that

is in press (Sinha and Ananthkrishnan [20]).

Equations of Motion in the Longitudinal Plane

The motion of an airplane in flight is described by two

vectors as shown in Fig.1 - the velocity V of its center of

gravity (cg) and its angular velocity vector ω. By placing

a set of axes X
B

Y
B

Z
B

 fixed to the airplane body at its cg,

V is the velocity of the origin of this body-fixed axis

system with respect to the Earth-fixed inertial axes

X
E

Y
E

Z
E

, and ω is the angular velocity of the body-fixed

axes with respect to the Earth-fixed axes. The airplane in

flight has six degrees of freedom, corresponding to the

three components of the velocity V and the three compo-

nents of the angular velocity ω. 

The longitudinal plane defined by the axes X
B

-Z
B

 is

usually an axis of symmetry for most airplanes. Addition-

ally, a significant part of airplane flight happens with the

velocity vector V lying in the longitudinal plane. The

dominant aerodynamic force, the lift, lies in the longitudi-

nal plane and most maneuvers arise by manipulating the

lift vector. Naturally, flight in the longitudinal plane gets

much attention. Pedagogically, it is easier to introduce

various concepts related to airplane dynamics and aerody-

namic modeling by first considering the case of longitudi-

nal flight.

Consider an airplane flying an arbitrary curved trajec-

tory in the longitudinal plane as shown in Fig.2. The

various angles and forces acting on the airplane are also

marked therein. The equations of motion in the longitudi-

nal plane can be written without further ado by straight-

forward appeal to the laws of physics.

m 
d V

d t
  =  T cos (θ − γ ) − D − W sin γ (1a)

m V 
d γ
d t

  =  T sin (θ − γ ) + L − W cos γ (1b)

I
yy

 
d q

d t
  =  M (1c)

where V is the scalar total velocity, γ is the flight path

angle, q is the body-axis pitch rate, and θ is the body-axis

pitch Euler angle. L, D, M, W, T are respectively the lift,

drag, pitching moment, weight and thrust. m is the airplane

mass and Iyy its moment of inertia about the Y
B

 axis.

Equation (1) is supplemented by the kinematic relations:

x
.
  =  V cos γ (2a)

z
.
  =  − V sin γ (2b)

θ
.
  =  q (2c)

where x and z are the distance measured along the Earth-

fixed axes X
E

 and Z
E

 respectively.

The obvious next step is to write the aerodynamic

forces and moment in Eq.(1) from aerodynamic theory.

The usual expressions for the drag, lift and pitching mo-

ment in terms of their respective coefficients

CD , CL , Cm are : D = q
_
 SCD ,    L = q

_
 SCL ,  and

M = q
_
 Sc Cm , where q is the dynamic pressure (= 1/2 ρ

V
2
), S is a reference area, usually the airplane wing plan-

form area, and c is the mean aerodynamic chord. Then

Eq.(1) appears as:
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m 
d V

d t
  =  T cos (θ − γ ) − q

_
SC

D
 − W sin γ (3a)

mV 
d γ
d t

  =  T sin (θ − γ ) + q
_
SC

L
 − W cos γ (3b)

I
yy

 
d q

d t
  =  q

_
ScC

m
(3c)

Timescales

Equation (3) with Eq.(3c) combined with Eq.(2c) can

be written as follows:

V
.

V
  =  





g

V



  








T

W



 cos (θ − γ ) − ( q

_
 S ⁄ W) C

D
 − sin γ


(4a)

γ
.
  =  





g

V



  








T

W



 sin (θ − γ ) + ( q

_
 S ⁄ W) C

L
 − cos γ


(4b)

θ
..
  =  ( q

_
 Sc ⁄ I

yy
) C

m
(4c)

where two timescales emerge naturally. The faster of these

is:

T
1
  =  √  I

yy

q
_
Sc

(5a)

called the pitch timescale, which for most conventional

airplanes is of the order of 1 second. This corresponds to

the pitching motion, i.e., nose bobbing up and down, and

represents the rate of change of  θ. The slower timescale

is:

T
2
  =  





V

g




(5b)

For most airplanes, this is of the order of 10 seconds

and corresponds to the heaving motion, i.e., the airplane

alternately gains and loses altitude (or, climbs and de-

scends). The variables V and γ naturally change at this rate.

It can be seen that T2 is one order (that is, around 10 times)

slower than the faster timescale T1. A key physical rule is

that phenomena that occur at clearly distinct timescales

can be studied separately. It is this very rule that allows us

to investigate the pitch dynamics (T1 timescale) inde-

pendently of the heave dynamics (T2 timescale) because

they are so well separated. For illustration, Fig.3 shows a

heave variable changing over a time period of 10 sec;

superimposed on it is the oscillation of the pitch variable

over a time period of 1 sec. During the time the pitch

variable is active, the heave variable changes little. Hence,

one is justified in assuming that the heave variables main-

tain constant values when the pitch dynamics is ongoing.

Contrariwise, when studying several cycles of the slower

heave dynamics, any pitch activity appears as a brief blip

that quickly damps out and may hence be ignored. This

last statement needs to be slightly qualified, as we point

out later in this paper.

Trim States

Trim states in longitudinal flight are obtained by set-

ting the left-hand side of Eq.(4) to zero. Thus, solving









T

W



 cos (θ

 ∗
 − γ

∗
 )  −  (q

_
∗
 S ⁄ W ) C

D
 
 ∗

 − sin γ
∗


  =  0 (6a)









T

W



 sin (θ

 ∗
 − γ

∗
 )  +  (q

_
∗
 S ⁄ W ) C

L
 
 ∗

 − cos γ
∗


  =  0 (6b)

C
m

 
∗
  =  0 (6c)

yields the trim values of the variables - V*, γ*, θ*, where

the superscript ‘*’ signifies a trim value. Usual trim states

are straight and level/ascending/descending flight. Since

airplane dynamic behavior in shallow ascents/descents is

not very different from that in level flight, it is normal to

concentrate only on straight and level flight trims.

Pitch/ Short Period Dynamics

Following the timescale separation argument above,

we are justified in considering Eq.(4c) alone for the pitch

dynamics while V, γ are held fixed at their trim values -

V*, γ*. Writing small perturbations about a trim state, we

have

θ
..
  +  ∆ θ

..
  =  





q
_
 Sc

I
yy





 (C
m

 
∗
 + ∆ C

m
 ) (7a)

And since θ
..
 = 0 at trim and Cm 

∗
 = 0 as well from Eq. (6c),

we obtain from Eq. (7a),

∆ θ
..
  =  





q
_
 Sc

I
yy





 ∆ C
m

(7b)
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as the small-perturbation equation in pitch. Referring to

Fig.2, we have the following relation between the angles:

θ = α + γ . Hence at trim, θ∗
 = α∗

 + γ∗
 . Under small per-

turbation, since γ remains undisturbed at γ*, we have

∆ θ = ∆ α . Thus, one may write the pitch perturbation

dynamics in Eq.(7b) as,

∆ α
..

  =  




q
_
 Sc

I
yy





 ∆ C
m

(7c)

which brings us to the crucial question of modeling the

small-perturbation aerodynamics for ∆Cm .

Small-perturbation Aerodynamic Modeling (Pitch

Motion)

The aerodynamic model for the perturbed coefficients

such as ∆Cm must be based on known facts from aerody-

namic theory and not be railroaded into a functional form

depending on the choice of variables used to represent the

flight dynamic states.

The aerodynamic forces acting on an airplane arise due

to its interaction with the relative wind. Generally, two

kinds of effects are required to be modeled: i) Static - due

to the relative wind velocity and the orientation of the

airplane with respect to the wind, and ii) Dynamic - due to

the relative angular motion between the airplane and the

wind. It is important to note that the aerodynamic forces

do not depend on the orientation of the airplane with

respect to the Earth (inertial axis) as given by the angles

such as θ. Equally, they do not depend on the airplane

angular rates with respect to the Earth, such as q.

Therefore, the perturbed pitching moment ∆Cm in the

most general case is modeled as a function of:

• the perturbation in Mach number ∆Ma, which in case

of pitch motion may be dropped as the velocity is being

considered to be constant, and the perturbation in angle

of attack, ∆α - static effect

• the difference between the perturbations in body-axis

and  wind-axis  pitch rates, (∆qb - ∆qw)  -   dynamic

effect

• the perturbation in wind-axis pitch rate, ∆qw - flow

curvature effect. To understand this, imagine an air-

plane performing a vertical loop of radius R with fixed

velocity V*. Then, ∆qw=V*/R. Any component, such as

the horizontal tail, located at a height h above the

airplane’s center-line which contains its cg, must there-

fore travel along the curved trajectory at a lower veloc-

ity given by ∆qw(R-h)=V*-∆qwh. The aerodynamic

forces on that component will then be a function of

(V*-∆qwh)
2
, and hence dependent on ∆qw.

• the downwash lag effect, which is modeled as a func-

tion of the angle of attack rate ∆α
.

Formally, one may write :

∆ C
m

  =  ∆ C
m

 (∆ α , ∆ q
b
 − ∆ q

w
 , ∆ q

w
 , ∆α

.
 ) (8a)

The simplest and most obvious form of this function,

having assumed small per turbations, is obviously a linear

expansion in Taylor  ser ies as:

∆ C
m

 = C
mα

 ∆ α + C
mq1

 (∆ q
b
 − ∆ q

w
) (c ⁄ 2V)

+ C
mq2

 ∆ q
w
 (c ⁄ 2V) + C

 mα
.  ∆α

.
 (c ⁄ 2V) (8b)

where the coefficients to the terms on the right-hand side

are partial derivatives (called aerodynamic derivatives or

stability derivatives) defined at the chosen trim state (in-

dicated by the ‘*’):

C
mα  =  

∂ C
m

∂ α
 |∗ ,  C

mq1
  =  

∂ C
m

∂ 

(q

b
 − q

w
) (c ⁄ 2V)



 |∗ ,

C
mq2

 = 
∂ C

m

∂ q
w

 (c ⁄ 2V)
 |∗ ,    C

mα
.   =  

∂ C
m

∂ [α
.
  (c ⁄ 2V)]

 |∗

(8c)

As long as motion is confined to the longitudinal plane,

it can be easily established that

∆q
b
  =  ∆ θ

.
, ∆q

w
  =  ∆γ

.
, ∆q

b
 − ∆q

w
 = ∆ θ

.
 − ∆γ

.
  =  ∆α

.
(9)

Hence, the aerodynamic model in Eq.(8b) can be up-

dated as

∆ C
m

 = C
mα

 ∆ α + C
mq1

 ∆α
.
 (c ⁄ 2V)

+ C
mq2

 ∆γ
.
 (c ⁄ 2V) + C

 mα
.  ∆α

.
 (c ⁄ 2V) (10a)
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The derivative Cmq2 is usually negligible for most

airplanes except for a few special cases such as those with

T-tails. We may therefore justifiably drop this term from

the aerodynamic model of Eq.(10a) to arrive at a usable

model as:

∆ C
m

 = C
mα

 ∆ α + (C
mq 1

 + C
mα

. ) ∆α
.
 (c ⁄ 2V) (10b)

A Note

At this point it may be instructive to pause and compare

the form of the aerodynamic model in Eq.(10) with the

traditional version which is modeled as

∆ C
m

 = C
mα

 ∆ α + C
mq1

 ∆q
b
 (c ⁄ 2V) + C

 mα
.  ∆α

.
 (c ⁄ 2V) ,

where for the sake of consistency of notation, the usual

derivative Cmq has been written as Cmq1. Using the rela-

tions in Eq.(9), one may render this as follows:

∆ C
m

 = C
mα

 ∆ α + (C
mq 1

 + C
mα

. ) ∆α
.
 (c ⁄ 2V) + C

mq1
 ∆γ

.
 (c ⁄ 2V) .

The comparison clearly reveals that the final term involv-

ing flow curvature is incorrectly modeled in the traditional

version - unwittingly the same physics that causes Cmq1
has been applied to the flow curvature term, falsely creat-

ing a much stronger flow curvature effect than exists in

reality. This has happened because the second term has

traditionally been incorrectly modeled as

Cmq1 ∆qb (c ⁄ 2V) instead of what should be

Cmq1 (∆qb − ∆qw ) (c ⁄ 2V ) .This error has also been tradi-

tionally carried over to the simulation of the complete

6-degree of freedom equations of airplane motion, such as

the ones used in flight testing, pilot training, and control

law design. Thus, the implications of this correction ex-

tend beyond the small-perturbation theory presented in the

classroom.

Short Period Mode Dynamics

Inserting the perturbed pitching moment coefficient

model of Eq. (10b) into the pitch dynamics Eq.(7c) gives

us the short period dynamics as:

∆ α
..

  −  






q
_

Sc

I
yy





 (c ⁄ 2V) (C
mq1

 + C
mα

.  )


  ∆ α
.

− 








q
_

Sc

I
yy





 C
mα




 ∆α  =  0 (11a)

which is a second-order linear equation in the perturbed

angle of attack, ∆α. From this, one can immediately obtain

expressions for the frequency and damping of the short

period mode as:

(ω
n

 2
 )

sp
  =  − 





q
_
Sc

I
yy





 C
mα (11b)

(2 ζω
n
)
sp

  =  − 




q
_
Sc

I
yy





 (c ⁄ 2V) (C
mq1

 − C
mα

. ) (11c)

Note that the short period frequency in Eq.(11b) is a

function of Cmα alone unlike the traditional solution where

an additional erroneous term involving Cmq and CLα ap-

pears. The sign of that additional term is such that even

when Cmα is marginally positive (supposedly a case of

static instability, or negative pitch stiffness), the combina-

tion of terms can traditionally yield a positive ωn
 2

, hence

a positive pitch stiffness. In contrast, the correct version

in Eq.(11) ensures that Cmα = 0 corresponds to zero pitch

stiffness - in other words, an eigenvalue (pole) at the origin

of the complex plane, as can be verified from Eq.(13)

below.

Short Period Mode Dynamics with Elevator Control

It is a simple matter to extend the model in Eq.(10) to

include the effect of small-perturbation elevator deflection

∆δe about the trim elevator state δe*. The modified

Eq.(10b) appears as:

∆ C
m

 = C
mα

 ∆ α + (C
mq 1

 + C
m

) ∆ α
.
 (c ⁄ 2V) + C

mδe
 ∆δe

(12a)

where the partial derivative Cmδe ,  called the elevator or

pitch control derivative, is defined as

C
mδe

  =  
∂ C

m

∂ δe
 |∗ (12b)

and the resulting model for the "forced" short period

dynamics is written as:

∆ α
..

  −  




q
_

Sc

I
yy





 (c ⁄ 2V) (C
mq1

 + C
mα

.  )  ∆ α
.

− 




q
_

Sc

I
yy





 C
mα

 ∆α  =  


q
_

Sc

I
yy





 C
mδe

 ∆δe (12c)
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Starting from this point, one may examine the effect

of small elevator deflections on the pitch dynamics, either

by numerical simulation of Eq.(12c), or by transforming

Eq.(12c) into the Laplace domain to write the transfer

function between perturbed angle of attack and perturbed

elevator deflection as:

∆ α (s )
∆ δ e (s)

 = 





q
_
Sc

I
yy





 C
mδe

 s
2
 − 




q
_
Sc

I
yy





 (c ⁄ 2V) (C
mq1

 + C
mα

.  ) s − 




q
_
Sc

I
yy





 C
mα

(13)

Then standard tools of frequency domain analysis may

be used to study Eq.(13). This track is more likely to be

followed in a course with focus on flight control. On the

other hand, a course geared towards aerodynamic design

of airplanes would focus on the aerodynamic derivatives

in Eq.(12a), and that is what we consider next.

Aerodynamic Coefficients for a Wing-Body-Tail

Configuration

It is standard to consider an airplane configuration

consisting of wing, body (fuselage) and tail, and write out

analytical expressions assuming linear aerodynamics for

the lift and pitching moment coefficients. These generally

appear as below. For the lift coefficient:

C
L
 = C

L0
 + C

Lα
α + C

Lα
.  α

.
 (c ⁄ 2V

∗
) + C

Lδe
 δe + C

Lq1
 (q

b
 − q

w
 ) (c ⁄ 2V)

(14a)

where

C
L0

  =  C
Lα
 wb

 α
0
  −  

S
t

S
  C

Lα
 t

  (i
t
 + ε

0
) (14b)

C
Lα  =  C

Lα
 wb

  +  
S

t

S
  C

Lα
 t

  (1 − εα) (14c)

C
Lα

.   =  − 
S

t

S
  C

Lα
 t

  (c ⁄ 2v
8
) ε

 α
. (14d)

C
Lδe

  =  




S
t

S




  C

Lδe

 t
(14e)

C
Lq1

  =  2 V
H

 C
Lα
 t

(14f)

where the CL derivatives are defined in a manner similar

to those for Cm in Eqs.(8c) and (12b). For the pitching

moment coefficient :

C
mCG

 = C
m0

 + C
mα

α + C
mα

.  α
.
 (c ⁄ 2V

∗
) + C

mδe
 δe + C

mq1
 (q

b
 − q

w
 ) (c ⁄ 2V

∗
)

(15a)

where

C
m0

  =  C
mAC

 wb
 + (h

CG
 − h

AC

 wb
 ) C

L0
 + V

H

  ′
 C

Lα

 t
 (i

t
 + ε

0
) (15b)

C
mα

  =  (h
CG

 − h
AC

 wb
 ) C

Lα
 − V

H

  ′
 C

Lα

 t
 (1 − ε

α
) (15c)

C
mα

.   =  (h
CG

 − h
AC

 wb
 ) C

Lα
.  + V

H

  ′
 C

Lα

 t
 (c ⁄ 2V

∗
 ) (15d)

C
mδe

  =  (h
CG

 − h
AC

 wb
 ) C

Lδe
 − V

H

  ′
 C

Lδe

 t
(15e)

C
mq1

  =  (h
CG

 − h
AC

 wb
 ) C

Lq1
 − 2V

H

  ′
 C

Lα

 t
  ( 

l
t

c
 ) (15f)

The downwash angle at the horizontal tail,  εtail,  has

been modeled by a linear approximation:

ε
tail

 ( t )  =  ε
0
 + εα α + εα

.  α
.
 ( c ⁄ 2V

∗
 ) (16a)

Some of the parameters of interest are the ratio of tail

to wing planform area St/S, tail setting angle it, non-dimen-

sional cg location hCG, non-dimensional wing-body aero-

dynamic center location hAC
 wb

 ,  and the horizontal tail

volume ratio (HTVR) defined as:

V
H

 ′
  =  

S
t
 l

t
 ′

Sc
 ,   V

H
  =  V

H

 ′
 − 

S
t

S
 ( h

CG
 − h

AC

 wb
 ) ,

l
t

c
  =  

l
t

 ′

c
 − ( h

CG
 − h

AC

 wb
 ) (16b)

where lt
 ′
 is the distance between the tail aerodynamic

center and the wing-body aerodynamic center, and lt is the

distance from the tail aerodynamic center to the airplane

cg. Note that lt
 ′
 is relatively fixed whereas lt varies with

shift in airplane cg.

Equations (14) and (15) may be used to discuss air-

plane trim, as given by Eq.(6), and the stability of the short

period mode dynamics, as may be obtained from Eq.(11).

The requirements of positive pitch stiffness and positive

pitch damping for short period stability translates into:

C
mα  <  0   and   ( C

mq1
 + C

mα
.  )  <  0 (17)
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Susequently, one can discuss tail sizing and examine

trim and stability in pitch under shift in cg location, which

leads to the concept of the neutral point, defined as:

h
NP

  =  h
AC

 wb
 + V

H

 ′
 ( C

Lα
 ′  ⁄ C

Lα ) ( 1 − εα ) (18)

The expressions in Eqs.(15b) and (15c) may then be

rewritten in terms of hNP as follows :

C
m0

  =  C
mNP

  +  C
L0

 ( h
CG

 − h
NP

 ) (19a)

C
mα  =  C

Lα ( h
CG

 − h
NP

 ) (19b)

whereby the static part of CmCG in Eq.(15a) may be

transformed to appear as :

C
mCG

  =  C
mNP

  +  C
L
 ( h

CG
 − h

NP
 ) (19c)

An important point here is that this entire discussion

of trim and stability naturally relates to the short period

dynamics, with the stability criterion in Eq.(17) coming

directly from Eq.(11) for the short period mode. Further,

when the cg is at the neutral point, Eq.(19b) clearly shows

Cmα=0 which implies zero pitch stiffness from Eq.(11).

Following this, one can talk about the use of elevator

to trim at different V* or α*, and derive a relation between

the trim lift coefficient CL* and the trim angle of attack

α*, and point out how this relation differs from the purely

aerodynamic model in Eq.(14a) which has no reference to

the pitching moment balance in Eq.(6c) at a trim state. This

leads to a determination of the forwardmost allowable cg

position for an airplane which usually corresponds to the

maximum ‘up’ deflection of the elevator. Several other

topics of interest can follow from this point:

• An alternative notion of stability based on the change

in trim angle of attack per change in trim elevator

deflection.

• The determination of neutral point from flight tests.

• Effect of neutral point shift with Mach number on

airplane trim and stability.

For a complete discussion of these matters, please refer

to the textbook (Sinha and Ananthkrishnan [20]).

Aerodynamic Coefficients for an Airplane in Real

Life

In practice the lift and moment coefficients for an

airplane are obtained by wind tunnel tests and it is worth-

while to present an example. Figs.4 and 5 show the vari-

ation of CL and Cm with angle of attack for a military

airplane over a range of α from -14 to +90 deg. The

expressions in Eqs.(14) and (15) are linear approximations

at low angles of attack, marked by the first dashed line in

Figs.4 and 5. Beyond that, nonlinear effects come in and

a different linear approximation may be used up to stall,

as marked by the second dashed line in Figs.4 and 5 - in

the present example, the lift curve slope decreases and the

pitching moment slope becomes less negative. Stall occurs

at around 35 deg angle of attack beyond which lift falls

gradually but a steep increase in negative pitching moment

is observed.

Heave/ Phugoid Dynamics

The heave dynamics occurs at the slower timescale T2

given by Eq.(5b) and can hence be studied independently

of the faster pitch dynamics. To study the heave dynamics,

we take Eqs.(4a) and (4b) and consider small perturbations

in velocity ∆V and in flight path angle ∆γ, while holding

the pitch variable, angle of attack, fixed at its trim value

α*. Thus, θ*-γ*= α*, and ∆θ=∆γ. Perturbations in thrust

are ignored, which is generally acceptable for jet-powered

airplanes.

Writing out the small-perturbation equations for the

heaving motion, we have:

V

.
 ∗

 + ∆V  =  g 




T

W
 cos α

∗
 −  

q

_
 ∗

S

W
  




1 + 2 
∆ V

V
 ∗




 (C
D

∗
 + ∆C

D
 ) − sin ( γ

∗
 + ∆γ )





(20a)

∆ γ
.
 ( V

.
 ∗

 + ∆V ) = g 




T

W
 sin α

∗
 + 

q

_
 ∗

S

W
  




1 + 2 
∆ V

V
 ∗




 (C
L

∗
 + ∆C

L
 ) − cos ( γ

∗
 + ∆γ )





(20b)

where we have used the following relation for the pertur-

bation in the dynamic pressure q :

q
_
  =  q

_
 ∗

 ( 1 + 2 
∆ V

V
 ∗

 ) (20c)
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Eliminating the trim condition in Eqs.(6a) and (6b)

from Eq.(20) yields the final form of the heave perturba-

tion equations as:

∆ V
.

V
 ∗

  =  


g

V
 ∗




 










 −  

q

_
 ∗

S

W
  




∆ C
D

 + 2C
D

 ∗
  

∆ V

V
 ∗




  −  cos γ
∗
 ∆ γ











(21a)

∆ γ
.
  =  



g

V
 ∗




 











q

_
 ∗

S

W
  




∆ C
L
 + 2C

L

 ∗
  

∆ V

V
 ∗




  −  sin γ
∗
 ∆ γ











(21b)

Which brings us to the question of modeling the per-

turbed lift and drag coefficients, ∆CL and ∆CD.

Small-perturbation Aerodynamic Modeling (Heave

Motion)

As in the case of  ∆Cm, there are four possible aerody-

namic effects we must consider while modeling ∆CL and

∆CD:

• Static effect: It is known that the lift and drag coeffi-

cients are functions of the Mach number. Hence the

effect of change in Mach number, ∆Ma, must be in-

cluded. However, since a constant angle of attack α*

has been assumed for the heave motion, there is no

effect due to ∆α.

• Dynamic effect: Due to the difference between the

perturbations in body-axis and wind-axis pitch rates,

(∆qb - ∆qw), which is equal to ∆ α
.
 from Eq.(9), and

therefore plays no role in the heave model.

• Flow curvature effect: Due to the perturbation in wind-

axis pitch rate, ∆qw, which is equal to ∆ γ
.
 from Eq.(9),

and hence must be included. However, as we have seen,

this effect is not significant for many conventional

airplane configurations, and can therefore be dropped

except for special cases such as T-tails.

• Downwash lag effect, which is modeled as a function

of the angle of attack rate ∆ α
.
 ,  so it does not figure in

the heave dynamics either.

Effectively, the perturbed drag and lift coefficients in

the case of heaving motion can be modeled as:

∆ C
D

  =  C
DMa

 ∆ Ma = C
DMa

  
∆ V

a
∗

 = 
V

∗

a
∗
 C

DMa
 




∆ V

V
∗




 = M a
∗
 C

DMa
 




∆ V

V
∗




(22a)

And in similar fashion,

∆ C
L
  =  C

LMa
 ∆ Ma  =  M a

∗
 C

LMa
 




∆ V

V
∗




(22b)

assuming a* to be constant despite the small change in

altitude due to the heaving motion. The aerodynamic

derivatives in Eq.(22) are defined as below:

C
DMa

  =  
∂ C

D

∂ Ma
 |∗ ,  C

LMa
  =  

∂ C
L

∂ Ma
 |∗ (23)

The ‘*’ indicates that the partial derivatives are to be

evaluated at the chosen trim state.

Phugoid Mode Dynamics

Replacing the perturbed aerodynamic coefficients in

Eq.(21) with the model in Eq.(22), we can write:

∆ V
.

V
 ∗

  =  




g

V
 ∗




 










 −  

q

_
 ∗

S

W
  



Ma

∗
 C

DMa
 + 2C

D

 ∗
  



 
∆ V

V
∗

 − cos γ
∗
 ∆ γ











(24a)

∆ γ
.
  =  



g

V
 ∗




 










 
q

_
 ∗

S

W
  



Ma

∗
 C

LMa
 + 2C

L

 ∗
  



 
∆ V

V
∗

 + sin γ
∗
 ∆ γ











(24b)

The next step is to combine Eq.(24a) and (24b) into a

single equation. To do this, first differentiate Eq.(24a) with

time and replace ∆γ
.
 on the right-hand side by Eq.(24b).

Further, assume the trim state to be one of level flight.

Hence, cos γ*=1 and sin γ*=0. This yields a single second-

order differential equation in ∆V for the phugoid mode

dynamics as:

∆ V
.

V
 ∗

  +  


g

V
 ∗




 



 
q

_
 ∗

S

W
  



Ma

∗
 C

DMa
 + 2C

D

 ∗
  







 
∆ V

.

V
∗

  +  


g

V
 ∗




2

  



 
q

_
 ∗

S

W
  



Ma

∗
 C

LMa
 + 2C

L

 ∗
  







 
∆ V

V
∗

  =  0 (25)

To extract the frequency and damping of the phugoid

mode from Eq.(25) is a simple task:
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(ω
n

 2
 )

p
  =  





g

V
 ∗




2

  



 
q

_
 ∗

S

W
  



Ma

∗
 C

LMa
 + 2C

L

 ∗
  








(26a)

( 2ζω
n
 )

p
  =  





g

V
 ∗




 



 
q

_
 ∗

S

W
  



Ma

∗
 C

DMa
 + 2C

D

 ∗
  








(26b)

Before we examine the stability of the phugoid mode

from Eq.(26), we need to expand on the aerodynamic

derivatives with Mach number.

Aerodynamic Coefficients as a Function of Mach

Number

The variation of the lift coefficient with Mach number

is usually given by the Prandtl-Glauert rule:

C
L
 ( Ma )  =  

C
L (Ma = 0 )

√ 1 − Ma
2

  (in subsonic flow) (27a)

Differentiating Eq.(27a) with Mach number, one can de-

rive,

C
LMa

 = 
∂ C

L

∂ M a
 |

∗
 = C

L
 (M a

∗
 ) . 

M a
∗

( 1 − M a
∗2

 ) > 0 (in subsonic

flow) (27b)

Thus, every term on the right-hand side of Eq.(26a) for

the phugoid frequency is ordinarily positive (at least in

subsonic flight), hence heave stiffness is virtually guaran-

teed for most airplanes. The requirement for phugoid

mode stability then boils down to the following condition

on the phugoid damping:





g

V
 ∗




 



 
q

_
 ∗

S

W
  



Ma

∗
 C

DMa
 + 2C

D

 ∗
  







  >  0 (28)

which is also almost certainly true in low-speed flight

since CDM a ≈ 0  and the other term is positive. Therefore,

phugoid mode stability under these conditions is usually

not a serious issue.

At high supersonic speeds, however, CLMa may be

negative and the Ma*CLMa term may overwhelm the 2CL*

term in Eq.(26a) to give negative stiffness in heave. Also,

for wave-drag-dominant configurations, CDMa < 0, and

the heave mode damping in Eq.(26b) may also turn out

negative. Therefore, it is not unusual for very high-speed

airplanes to have a poorly damped or even unstable phu-

goid mode.

At very low speeds, one may neglect Ma∗
 CLMa in

comparison to 2CL
 ∗

 ,  and Ma
∗ CDMa as compared to

2CD
 ∗

 in Eq.(26). That gives further approximate versions

of the phugoid frequency and damping formulas as:

( ω
n
 )

p
 ≈ √2    





g

V
 ∗




 , (2ζω
n
 )

p
 ≈ 




g

V
 ∗




 



 
q

_
 ∗

S

W
  



2C

D

 ∗
  








=  




g

V
 ∗




  











2C
D

∗

C
L

∗










  or  ζ

p
 ≈  

1

√ 2
   

C
D

∗

C
L

∗
(29)

From Eq.(26) or Eq.(29), it is obvious that the phugoid

frequency and damping are inversely related to the trim

velocity V*. In fact, this conclusion follows directly once

the slow timescale T2 = V/g is identified with the phugoid

mode dynamics. Another interesting observation is that

the phugoid damping is inversely proportional to the aero-

dynamic efficiency at trim, CL*/CD*. Full flap deflection

used at landing approach therefore has the effect of im-

proving phugoid damping.

Whereas the short period frequency and damping in

Eq.(11) usually provide a close match to values observed

in flight, the phugoid formulas in Eq.(26) do not always

give a quantitatively correct approximation to the in-flight

frequency and damping. The mystery was resolved by

Ananthkrishnan and Unnikrishnan [16] who pointed out

that there is a component of ∆α, called the static residual,

that persists even after the short period mode has died out

and varies as per the phugoid timescale. When the static

residual is included in the multiple timescale approach,

improved approximations are obtained to the phugoid

mode parameters, and indeed in similar fashion to the

slower modes in the lateral-directional dynamics as well.

Improved Longitudinal Mode Approximations

The complete set of small-perturbation longitudinal

equations assuming a level flight trim state may be gath-

ered from Eqs.(21) and (7b) as below:

∆ V
.

V
 ∗

  =  




g

V
 ∗




 










 −  

q

_
 ∗

S

W
  




∆ C
D

 + 2C
D

 ∗
  

∆ V

V
 ∗




  −  ∆ γ









(30a)

NOVEMBER 2013 AIRPLANE LONGITUDINAL DYNAMICS 337



∆ γ
.
  =  



g

V
 ∗




 










 
q

_
 ∗

S

W
  




∆ C
L
 + 2C

L

 ∗
  

∆ V

V
 ∗













(30b)

∆ θ
..
  =  



q
_
 Sc

I
yy





  ∆ C
m

(30c)

The most general model for the perturbed aerodynamic

coefficients may be written as follows:

∆ C
D

  =  C
DMa

 ∆ Ma + C
Dα

 ∆α + C
Dq1

 (∆q
b
 − ∆q

w
 ) (c ⁄ 2V

∗
 )

+ C
Dq2

 ∆q
w

 (c ⁄ 2V
∗
 ) = M a

∗
 C

DMa
 




∆ V

V
∗




 + C
Dα

 ∆α

+ C
Dq1

 ∆α
.
 (c ⁄ 2V

∗
 ) + C

Dq2
 ∆γ

.
 (c ⁄ 2V

∗
 )

∆ C
L
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LMa
 ∆ Ma + C

Lα
 ∆α + C

Lq1
 (∆q

b
 − ∆q

w
 ) (c ⁄ 2V

∗
 )

+ C
Lq2

 ∆q
w

 (c ⁄ 2V
∗
 ) = M a

∗
 C

LMa
 


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∆ V

V
∗




 + C
Lα

 ∆α

+ C
Lq1

 ∆α
.
 (c ⁄ 2V

∗
 ) + C

Lq2
 ∆γ

.
 (c ⁄ 2V

∗
 )

∆ C
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  =  C
mMa

 ∆ Ma + C
mα

 ∆α + C
mq1

 (∆q
b
 − ∆q

w
 ) (c ⁄ 2V

∗
 )

+ C
mq2

 ∆q
w

 (c ⁄ 2V
∗
 ) = M a

∗
 C

mMa
 




∆ V

V
∗




 + C
mα

 ∆α

+ C
mq1

 ∆α
.
 (c ⁄ 2V

∗
 ) + C

mq2
 ∆γ

.
 (c ⁄ 2V

∗
 ) (31)

where the elevator control derivatives have not been in-

cluded for convenience.

Short Period Mode Dynamics

First we study the fast pitch dynamics at timescale T1

in Eq.(30c). In this interim, we can assume the slower

variables - ∆V, ∆γ - to be effectively constant, hence their

time rates of change are zero. That allows us to write the

perturbed pitch dynamics as:

∆ α
..

  =  




q
_
 Sc

I
yy



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  ∆ C
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q
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I
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

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V
∗


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+ C
mα

 ∆α + C
mα

.
α
.  ∆α

.
 (c ⁄ 2V

∗
 ) (32a)

Re-arranging terms, we obtain the short period dy-

namic model as :

∆ α
..

  −  


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q
_
 Sc

I
yy


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q
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I
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q
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

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  Ma
∗
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V
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
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(32b)

The left-hand side of Eq.(32b) is identical to Eq.(11a)

and hence the short period frequency and damping expres-

sions in Eq.(11) are retained unchanged. However, the

presence of the slow term on the right-hand side of

Eq.(32c) implies that the perturbation in angle of attack

does not die down to zero; instead it leaves behind a static

residual value:

∆ α
s
  =  − Ma

∗
 (C

mMa
 ⁄ C

mα )  




∆ V

V
∗




(33)

which now varies at the slower timescale T2.

Phugoid Mode Dynamics

Combining Eqs.(30a) and (30b) at the slower timescale

with the aerodynamic model in Eq.(31) yields a single

second-order equation for the phugoid dynamics, as in

Eq.(25), as follows:
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(34a)

where we drop the flow curvature terms as before, as well

as the q1 and α
.
 derivatives - CDq1 is usually not so

important and CLq1 gives a correction to the phugoid

damping that is of higher order in g/V* and hence may be

ignored. The ∆a in Eq.(34a) is the component that varies

at the slow timescale and which we have determined as the

static residual in Eq.(33). ∆ α
.
 may be obtained by differ-

entiating Eq.(33). The resulting model for the phugoid

mode dynamics appears as:
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(34b)
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The expressions for the phugoid frequency and damp-

ing may be read off from Eq.(34b) as follows:

( ω
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And these are different from the previous formulas in

Eq.(26) by one additional term each which may be quite

significant. CLa is a fairly large number, usually of the

order of 5 to 6 /rad. CD can be expressed as a generic drag

polar as follows:

C
D

  =  C
D0

 + K
1
 C

L
 + K

2
 C

L

 2
(35a)

Which on differentiating gives,

C
D a

  =  (K
1
 + 2 K

2
 C

L

∗
 ) C

L a
(35b)

CnMa mainly arises due to the change in lift coefficient

at the horizontal tail by the Prandtl-Glauert rule as in

Eq.(27a). Another reason for change of Cm with Ma is due

to the shift in the aerodynamic center (and hence the

neutral point) as the airplane traverses the transonic flight

regime. The np shifts further aft in supersonic flight; hence

the net lift acting at the airplane np exerts a larger down-

pitching moment at the airplane cg. As the airplane trav-

erses up the transonic Mach numbers, this down-pitching

moment gradually comes into effect pitching the airplane

nose down. This is often called the tuck under effect.

Effectively, the inclusion of the static residual is cru-

cial in getting improved approximations to the phugoid

mode parameters.

Conclusion

This paper has suggested improvements and correc-

tions to the existing presentation of airplane flight dynam-

ics from a pedagogical perspective. Most promimently,

the modeling of the dynamic (rate) derivatives, a carry

over from the original work by Bryan [1], has been shown

to be faulty and has been replaced by a new model that

bears greater fidelity to aerodynamic theory. It is argued

that it is better to start with the easily-derived equations of

motion in the longitudinal plane than the complete six

degree of freedom equations which puts off many in the

audience. The fast and slow timescales in longitudinal

dynamics are clearly identified and are used to derive the

equations for the short period and phugoid modes - once

without considering the static residual, which gives the

standard, poor phugoid approximations, and then again

with the static residual, which gives improved expressions

for the phugoid frequency and damping. The redundant

and confusing concepts of dimensional derivatives and

static stability have been junked. It is hoped that this

simple, corrected presentation of flight dynamics will gain

pedagogical acceptance.
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Fig.1 Axes Systems and Airplane Degrees of Freedom

Represented by the Vectors V and ω
Fig.2 Various Angles and Vectors (Forces and Velocity)

in the Longitudinal Plane
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Fig.3 Heave Motion Variable Changes Little During the Short

Time Over which the Pitch Motion Variable is Excited and

Quickly Damps Out

Fig.4 Example Airplane Lift Coefficient as a Function of

Angle of Attack

Fig.5 Airplane Pitching Moment Coefficient as a

Function of Angle of Attack
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