Main Article Content

Abstract

The present paper overviews the development of materials and superalloys for aero engine hot end components to meet the increasing trend of turbine inlet temperature. Requirement of higher and higher thrust is steadily increasing the turbine inlet temperature and the development of nickel-chromium superalloys in early 1940s could not fulfil the material capability for long. Various nickel-base superalloys developed in 1950s and 1960s could increase the life of hot end components by retaining strength and resisting oxidation at extreme temperatures. In the 1960s and 1970s, with almost stagnation in high temperature alloy development, metallurgists changed focus from alloy chemistry to alloy processing which evolved the directional solidification and single crystal casting technologies. At present, almost all fighter class engines and high bypass commercial engines are using nickel and cobalt base superalloys for hot end components and single crystal superalloys particularly for turbine blades. This paper covers the developmental phases of superalloys and casting technologies for engine hot end components. This paper will be an invaluable asset for the researchers as well as for designers of future gas turbine engines.

Keywords

Turbine Inlet Temperature, Superalloy, Directionally Solidification, Single Crystal Superalloy

Article Details

How to Cite
Mishra, R. K. (2024). Development of High Temperature Materials for Aero Engine Hot End Components: An Overview. Journal of Aerospace Sciences and Technologies, 76(3), 99–110. https://doi.org/10.61653/joast.v76i3.2024.975

References

  1. Meher-Homji, C. B., "The Development of the Junkers Jumo 004B: The Worlds First Production Turbojet", ASME 1996 International Gas Turbine and Aero Engine Congress and Exhibition, 10th June 1996, (pp. V002T02A012-V002T02A012), American Society of Mechanical Engineers.
  2. Cohen, H., Rogers, G. F. C. and Saravanamuttoo, H. I. H., Gas Turbine Theory, Longman Group Limited, 1996.
  3. Tony Giampaolo., "The Gas Turbine Handbook: Principles and Practices", 2nd Edition, Fairmont Press, Inc., 2003.
  4. Mishra, R.K., "Development of Low Emission Combustion Technologies for Modern Aero Gas Turbine Engines: An Overview", Journal of Aerospace Sciences and Technologies, Vol.73, No.2, 2021, pp.6575.
  5. Jackson Paul., "Jane’s all the World’s Aircraft", : 1997-98, Janes Information Group, 1997.
  6. Kyprianidis, K.G., "Future Aero Engine Designs: An Evolving Vision", Advances in Gas Turbine Technology, Editited by Benini Ernesto., 2011, IntechOpen.
  7. Lefebvre, A.H., "Gas Turbine Combustion", Taylor and Francis, 1998.
  8. Han Je-Chin., Sandip Dutta and Srinath Ekkad., "Gas Turbine Heat Transfer and cOoling Technology", CRC Press, 2012.
  9. Schulz, A., "Combustor Liner Cooling Technology in Scope of Reduced Pollutant Formation and Rising Thermal Efficiencies", Annals of the New York Academy of Sciences, 934.1, 2001, pp.35-146.
  10. Mishra, R. K., "Life Enhancement of Gas Turbine Combustor Liner Through Thermal Barrier Coating", Journal of Failure Analysis and Prevention, Vol.17, No.5, August 2017, pp.914-918. Doi: 10.1007/s11668-017-0323-2.
  11. Konter, M. and Thumann, M., "Materials and Manufacturing of Advanced Industrial Gas Turbine Components", Journal of Materials Processing Technology, 117, No.3, 2001, pp.386-390.
  12. Li, Z. Y., Wei, X. T., Guo, Y. B. and Michael P. Sealy., "State-of-Art, Challenges, and Outlook on Manufacturing of Cooling Holes for Turbine Blades", Machining Science and Technology, 19, No.3, 2015, pp.361-399.
  13. Mattingly Jack, D., Heiser H. William and David T. Pratt., "Aircraft Engine Design", AIAA Education Series, AIAA, Inc, Reston VA, 2002.
  14. Mishra, R. K., "The Trend of Bypass Ratio in Aero Engines: an Overview", Journal of Aerospace Sciences and Technologies, Vol.74, No.2, 2022, pp.7989.
  15. Mishra, R. K., Prakash, L., Srinivasan, K. and Saravanan, M., "Studies on Performance Deterioration of a Low Bypass Turbofan Engine in Service", Journal of Aerospace Sciences and Technologies, Vol.68, No.4, 2016, pp.245-51.
  16. Mishra, R. K., Thomas, J., Srinivasan, K., Nandi, V. and Bhatt, R. R., "Investigation of HP Turbine Blade Failure in a Military Turbofan Engine", International Journal of Turbo and Jet-Engines,. 1st April 2017, Vol.34 (1), pp.23-31. Doi:10.1515/tjj-2015-0049.
  17. Mishra, R. K. and Srinivasan, K., "Failure of LowPressure Turbine Blades in Military Turbofan Engines: Causes and Remedies", Journal of Failure Analysis and Prevention, Vol.16 (4), 1st August 2016, pp.622-8. Doi:10.1007/s11668-016-0131-0.
  18. Cowles, B. A., "High Cycle Fatigue in Aircraft Gas Turbinesan Industry Perspective", Int. J. Fract. 80, 1996, pp.147-163.
  19. Ozaltun, H., Jeremy Seidt, M. et al., "An EnergyBased Method for Uni-Axial Fatigue Life Calculation", GT2009-59512, Proceedings of ASME Turbo Expo 2009, June 2009, Orlando, FL, USA.
  20. Mouritz Adrian, P., "Introduction to Aerospace Materials", Elsevier, 2012.
  21. Prasad N. Eswara and Russel J. H Wanhill., Editors, "Aerospace Materials and Material Technologies", Vol.1. Singapore, Springer, 2017.
  22. Sims Chester, T., "A History of Superalloy Metallurgy for Superalloy Metallurgists", Superalloys1984, 1984, pp.399-419.
  23. Yamamoto., Yukinori., Michael P. Brady., Govindarajan Muralidharan., Bruce A. Pint., Philip J. Maziasz., Dongwon Shin., Benjamin Shassere., Sudarsanam Suresh Babu and C-H. Kuo., "Development of Creep-Resistant, Alumina-Forming Ferrous Alloys for High-Temperature Structural Use", Pressure Technology, Vol.40764, p.V001T04A003, American Society of Mechanical Engineers, 2018.
  24. Gialanella., Stefano., Alessio Malandruccolo., Stefano Gialanella and Alessio Malandruccolo., "SuperAlloys", Aerospace Alloys, 2020, pp.267-386.
  25. Betteridge, W., and Shaw, S. W. K., "Development of Superalloys", Materials Science and technology, 3, No.9, 1987, pp.682-694.
  26. Sims Chester, T., "A Contemporary View of Nickelbase Superalloys", JOM18, 1966, pp.1119-1130.
  27. Smith, R. J., Lewi, G. J. and Yates, D. H., "Development and Application of Nickel Alloys in Aerospace Engineering", Aircraft Engineering and Aerospace Technology, 73, No.2, 2001, pp.138-147.
  28. Kay, A. L., "Turbojet, History and Development 1930-1960", Vol.1, 2007, Crowood Press, Great Britain and Germany, Marlborough.
  29. Shankar., Vani, K., Bhanu Sankara Rao and Mannan, S. L., "Microstructure and Mechanical Proper-ties of Inconel 625 Superalloy", Journal of Nuclear Materials, 288, No.2-3, 2001, pp.222-232.
  30. Sato, J., Omori, T., Oikawa, K., Ikuo Ohnuma., Kainuma, R. and Ishida, K., "Cobalt-Base HighTemperature Alloys", Science, 312, No.5770, 2006, pp.90-91.
  31. Bauer., Alexander., Steffen Neumeier., Florian Pyczak and Mathias Gken., "Creep Strength and MicroStructure of Polycrystalline g’-Strengthened Cobalt-Base Superalloys", Superalloys,12, 2012, pp.695-703.
  32. Herchenroeder, R. B., "Haynes Alloy No.188 Aging Characteristics", International Symposium on Structural Stability in Superalloys, 1968, pp.110-112.
  33. Groh., Jon., Tim Gabb., Randy Helmink and Agnieszka Wusatowska-Sarnek., "100+ Years of Wrought Alloy Development at Haynes International", Proceedings of the 8th International Symposium on Superalloy, Vol.718, 2014, p.15.
  34. Langston Lee., "Each Blade a Single Crystal", Am. Science, 103, No.1, 2015, p.30.
  35. Duhl, D. N. and Thompson, E. R., "Directional Structures for Advanced Aircraft Turbine Blades", Journal of Aircraft, 14, No.6, 1977, pp.521-526.
  36. Henry, M. E., Jackson, M. R. and Walter, J. L., "Evaluation of Directionally Solidified Eutectic Superalloys for Turbine Blade Applications", No. NASA-CR-135151, 1978.
  37. Das Niranjan., "Advances in Nickel-Based Cast Superalloys", Transactions of the Indian Institute of metals, 63, 2010, pp.265-274.
  38. Parkes, R. J., "Design Aspects of Recent Developments in Rolls-Royce RB211-524 Powerplants", Turbo Expo: Power for Land, Sea, and Air, 79191, 1988, V002T02A016.
  39. Wang., Andong., Jinjuan Lv., Caifeng Chen., Weitai Xu., Luxiang Zhang., Yongquan Mao and Yutao Zhao., "Effects of Heat Treatment on Microstructure and High-Temperature Tensile Properties of NickelBased Single-Crystal Superalloys", Materials Research Express, 6, No.12, 2019, 126527.
  40. Ding., Qingqing., Hongbin Bei., Xinbao Zhao., Yanfei Gao and Ze Zhang., "Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy", Crystals,10, No.7, 2020, p. 572.
  41. Walston, S., Cetel, A., MacKay, R., Ohara, K., Duhl, D. and Dreshfield, R., "Joint Development of a Fourth-Generation Single Crystal Superalloy", 10th International Symposium on Superalloys, No.NASA/TM-2004-213062, 2004.
  42. Petrushin, N. V., Elyutin, E. S., Visik, E. M. and Golynets, S. A., "Development of a Single-Crystal Fifth-Generation Nickel Superalloy", Russian Metallurgy (Metally), No.11, 2017, pp.936-947.
  43. Sato Akihiro., Hiroshi Harada., An-Chou Yeh., Kyoko Kawagishi., Toshiharu Kobayashi., Yutaka Koizumi., Tadaharu Yokokawa and Zhang, J. X., "A 5th generation SC Superalloy with Balanced High Temperature Properties and Processability, Superalloys, 2008, pp.131-138.
  44. Kawagishi, K., Sato, A., Harada, H., Yeh, A-C., Koizumi, Y. and Kobayashi, T., "Oxidation Resistant Ru Containing Ni Base Single Crystal Superalloys", Materials Science and Technology, 25, No.2, 2009, pp.271-275.
  45. "American Airlines Aircraft Operating Statistics-Actuals", 2018. Available online: http://web.mit.edu/airlinedata/www/2019%2012%20Month%20Documents/Aircraft%20and%20Related/Carrier%20Operating%2 0Stats/American%20Airlines%20Aircraft%20Operating%20Statistics-%20Actuals.html
  46. Hasselman, D., Johnson, L. F., Bentsen, L. D., Syed, R., Lee, H. and Swain, M. V., "Thermal Diffusivity and Conductivity of Dense Polycrystalline Zr02 Ceramics: A Survey", Am. Ceram. Society, Bull, 66, 1987, pp.799-806.
  47. Padture, N. P., "Thermal Barrier Coatings for Gas- Turbine Engine Applications", Science, 296, 2002, pp.280-284.
  48. Stott, F. and Wood, G., "Growth and Adhesion of Oxide Scales on Al2O3-Forming Alloys and Coatings". Mater. Science Engineering, 87, 1987, pp.267-274.
  49. Schulz Uwe., Christoph Leyens., Klaus Fritscher., Manfred Peters., Bilge Saruhan-Brings., Odile Lavigne., Jean-Marc Dorvaux., Martine Poulain., Remy Mvrel and Michaël Caliez., "Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings", Aerospace Science and technology, 7, No.1, 2003, pp.73-80.
  50. Long Haibo., Shengcheng Mao., Yinong Liu., Ze Zhang and Xiaodong Han., "Microstructural and Compositional Design of Ni-Based Single Crystalline Superalloys - A Review", Journal of Alloys and Compounds, 743, 2018, pp.203-220.
  51. Kawagishi Kyoko., An-Chou Yeh., Tadaharu Yokokawa., Toshiharu Kobayashi., Yutaka Koizumi and Hiroshi Harada., "Development of an Oxidation-Resistant High-Strength Sixth-Generation Single-Crystal Superalloy TMS-238", Superalloys, 9, 2012, pp.189-195.
  52. Yamaguchi, M., Inui, H. and Ito, K., "High-Temperature Structural Intermetallics", Acta Materialia, 48, No.1, 2000, pp.307-322.
  53. Stoloff, N. S., Liu, C. T. and Deevi, S. C., "Emerging Applications of Intermetallics", Intermetallics,8, No.9-11, 2000, pp.1313-1320.
  54. Karpov, M. I., "Niobium-Base Refractory Alloys with Silicide and Carbide Hardening Current Status and Prospects", Metal Science and Heat Treatment, 60, 2018, pp.7-12.
  55. Ahlqvist Fehr Alexander., "An Overview of the Development and Potential of Ceramic Materials for Use in Micro Gas Turbines", School of Industrial Engineering and Management, KTH Royal Institute of Technology, Stockholm, Sweeden, 2023.
  56. Nishimura Toshiyuki., Guo, S., Naoto Hirosaki and Mamoru Mitomo., "Improving Heat Resistance of Silicon Nitride Ceramics with Rare-Earth Silicon Oxynitride", Journal of the Ceramic Society of Japan, 114, No.1335, 2006, pp.880-887.
  57. Steibel Jim., "Ceramic Matrix Composites Taking Flight at GE Aviation", Am. Ceram. Society, Bull, 98, No.3, 2019, pp.30-33.