Main Article Content

Abstract

The effect of porosity has been studied by developing different levels of porosity laminates through a new autoclave based manufacturing technique known as Diverse Cure System (DCS). Further assessment of porosity levels by mechanical characterization (Inter-laminar Shear Strength), microscopic studies and acid digestion method have been achieved in Carbon Fiber Epoxy laminates. Correlations are obtained on the different levels for porosity laminates of two different thicknesses. ILSS test results are compared with the literature results. Assessment of porosity effect on ILSS is performed at room temperature and environmentally conditioned specimens. Strength degradation of 20 to 30% has been noticed on porosity laminates. Hygro-thermal specimens are tested at room temperature, elevated temperature and hot wet condition. A large reduction in the range of 45 to 53% in ILSS has been noticed on the moisture conditioned specimens tested at elevated temperature of 150°C.

Keywords

Advanced composite; Strength properties; ILSS; Hygro-thermal effect; Ultrasonic inspection; Process induced defect; Porosity

Article Details

How to Cite
Ramesh Kumar, M., Karuppannan, D., Sundaram, R., & Ghosh, A. (2023). Experimental Investigation of Aerospace Grade Composites Porosity Laminates Under Hygro-Thermal Environment Condition. Journal of Aerospace Sciences and Technologies, 69(1), 36–46. https://doi.org/10.61653/joast.v69i1.2017.196

References

  1. Smith, R., "Composite Defects and Their Detection", Mater Sci Eng 1997, III.
  2. George A Matzkanin., "Techniques for the Non-Destructive Evaluation of Polymer Matrix Composites", n.d., 2:37.
  3. Choudhry, S. and Kumar, V., "Effect of Porosity on the Mechanical Strength of 2012", p.946.
  4. Ahmad, S. N. A. S., Hashim, J. and Ghazali, M. I., "Effect of Porosity on Tensile Properties of Cast Particle Reinforced MMC", J Composite Mater., 41, 2006, pp.575-89. doi:10.1177 / 0021998306066720.
  5. Aqida, S. N, Ghazali, M. L. and Hashim, J., "Effects of Porosity on Mechanical Properties of Metal Matrix Composite: An Overview", 40, 2004, pp.17-32.
  6. Balik, K., "Porous Composite Materials with Polyamide Reinforcement and Siloxane Matrix with Nano-Hydroxyapatite as Biomaterials", 2009, pp.43-51.
  7. Nightingale, C. and Day, R., "Flexural and Interlaminar Shear Strength Properties of Carbon Fibre/Epoxy Composites Cured Thermally and With Microwave Radiation Compos Part-A", Appl Sci Manuf., 33, 2002, pp.1021-30. doi:10.1016 / S1359-835X (02) 00031-3.
  8. Mortimer, S. and Smith, M. J., "Product Development for Out-of-Autoclave Manufacture of Aerospace Structure", 2010.
  9. Omgba-essama, C., Cranfield University, Vol.2009, 2009. doi:10.1260/0957456042880200.
  10. Walker, J. L., Russell, S. S., Suits, M. W. and Workman, G. L., "Fatigue Crack and Porosity Measurement in Composite Materials by Thermographic and Ultrasonic Methods", NASA Document 2013
  11. Bhat, M. R., Binoy, M. P., Surya, N. M. and Murthy, C. R. L. and Engelbart, R. W., "Non-Destructive Evaluation of Porosity and Its Effect on Mechanical Properties of carbon fiber reinforced polymer composite Materials", Aip 2012, 1080:1080-7. doi:10.1063/1.4716341.
  12. Roth, K. and Schulin, R., "Calibration of Time Domain Reflectometry for Water Content Measurement Using a Composite Dielectric Approach", Water Resource, 1990.
  13. Ahmad, S. N., "The Effects of Porosity on Mechanical Properties of Cast Discontinuous Reinforced Metal-Matrix Composite", J Compos Mater., 39, 2005, pp.451-66. doi:10.1177 / 0021998305047096.
  14. Zhang, A., Lu, H. and Zhang, D., "Research on the Mechanical Properties Prediction of Carbon/Epoxy Composite Laminates with Different Void Contents", Polym Compos., 2014, n/a-n/a. doi:10.1002/pc.23149.
  15. Hu, R. H., Sun, M. Y. and Lim, J. K., "Moisture Absorption, Tensile Strength and Microstructure Evolution of Short Jute Fiber/Polylactide Composite in Hygrothermal Environment", Mater Des., 2010, 31, pp.3167-73. doi:10.1016/j. matdes. 2010.02.030.
  16. Liu, L., Zhang, B., Wu, Z. and Wang, D., "Effects of Cure Pressure Induced Voids on the Mechanical Strength of Carbon/Epoxy Laminates", J Mater Sci Technol 2005.
  17. Edward., "Effect of Voids on Mechanical Properties of Graphite Fiber Composites", 1970.
  18. Santulli, C., Brooks, R., Rudd, C.D. and , Long, A.C., "Influence of Microstructural Voids on the Mechanical and Impact Properties in Commingled Eglass/ Polypropylene Thermoplastic Composites", Proc Inst Mech Eng Part L J Mater Des Appl., 2002, 216, pp.85-100. doi:10.1177 / 146442070221600204.
  19. Demma, A., Road, E. and Djordjevic, B. B., "Effects of Porosity on the Mechanical Strength and Ultrasonic Attenuation of CF-Peek Fibre Placed Composites", 2013, p.16.
  20. Stone, D. E. W. and Clarke, B., "Ultrasonic Attenuation as a Measure of Void Content in Carbon-Fibre Reinforced Plastics, Non-Destructive Test", 1975, 8, pp.137-45.
  21. Ghiorse, S., "A Comparison of Void Measurement Methods for Carbon/Epoxy Composites", 1991.
  22. Connolly, M. P., "The Measurement of Porosity in Composite Materials Using Infrared Thermography", Reinf Plast Compos., 1992, 11, pp.1367-75. doi:10.1177/073168449201101203.
  23. Kastner, J., Plank, B., Salaberger, D. and Sekelja, J., "Defect and Porosity Determination of Fibre Reinforced Polymers by X-ray Computed Tomography", 2010, pp.1-12.
  24. Lin, L., Luo, M., Tian, H.T., Li, X. M. and Guo, G. P., "Experimental Investigation on Porosity of Carb- on Fiber-Reinforced Composite Using Ultrasonic Attenuation Coefficient", 2008.
  25. Bowles, K. and Frimpong, S., "A Study of Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite Fiber Reinforced Composites", 1990.
  26. Ling Liu., Boming Zhang., Zhanjun Wu, D. W., "Effect of Cure Pressure Induced Voids on the Mechanical Strength of Carbon / Epoxy Laminates", J Mater Sci Technology, 2005, 21, pp.87-91.
  27. Kay, J., Fahrang, L., Hsiao, K. and Fernlund, G., "Out-of-Autoclave Prepreg Laminates", n.d.
  28. Olivier, P. A., Margueres, P. and Collombet , F., "16th International Conference on Composite Materials CFRP with Voids: Ultrasonic Characterization of Localized Porosity, Acceptance Criteria and Mechanical Characteristics", n.d.
  29. Leman, Z., Sapuan, S. M., Saifol, A. M., Maleque, M. A. and Ahmad M. M. H. M., "Moisture Absorption Behavior of Sugar Palm Fiber Reinforced Epoxy Composites", Mater Des., 2008, 29, pp.1666-70. doi:10.1016/j.matdes.2007.11.004.
  30. Seto, D., Matsuzaki, R., Todoroki, A. and Mizutani, Y., "Void Formation in an Anisotropic Woven Fiber", Vol.1, n.d., p.15.
  31. Barraza, H. J., Hamidib, Y. K., Aktasb, L., O’Rear, E. A. and Altan, M. C., "Porosity Reduction in the High-Speed Processing of Glass-Fiber Composites by Resin Transfer Molding (RTM)", J Compos Mater., 2004, 38, pp.195-226. doi:10.1177 / 0021998304038649.
  32. Kedari, V. R., Farah, B. I. and Hsiao, K-T., "Effects of Vacuum Pressure, Inlet Pressure, and Mold Temperature on the Void Content, Volume Fraction of Polyester/E-glass Fiber Composites Manufactured with Vartm Process", J Compos Mater., 2011, 45, pp.2727-42. doi:10.1177/0021998311415442.
  33. Choi, H. S., Ahn, K. J., Nam, J. and Chun, H. J., "Hygroscopic Aspects of Epoxy / Carbon Fiber Composite Laminates in Aircraft Environments", 2001, 32.
  34. Woo, L., "Modeling Void Formation and Unsaturated Flow in Liquid Composite Molding Processes: A Survey and Review", J Reinf Plast Compos., 2011, 30, pp.957-77. doi:10.1177/0731684411411338.
  35. Aldajah, S., Al-omari, A. and Biddah, A., "Accelerated Weathering Effects on the Mechanical and Surface properties of CFRP Composites", Mater Des., 2009, 30, pp.833-7. doi:10.1016 / j.matdes. 2008.05.017.
  36. Costa, M. L., De Almeida, S. F. M. and Rezende, M. C., "Critical Void Content for Polymer Composite Laminates", AIAA J., 2005, 43, pp.1336-41. doi:10.2514/1.5830.
  37. Bowles, K. J. and Frimpong, S., "Relationship Between Voids and Interlaminar Shear Strength of Polymer Matrix Composites", 1991.
  38. Bowles, K. J. and Frimpong, S., "Void Effects on the Interlaminar Shear Strength of Unidirectional Graphite- Fiber-Reinforced Composites", J Compos Mater., 1992, 26, pp.1487-509. doi:10.1177 / 002199839202601006.
  39. Zhu, H., Li, D., Zhang, D., Wu, B. and Chen, Y., "Influence of Voids on Interlaminar Shear Strength of Carbon/Epoxy Fabric Laminates" Trans Nonferrous Met Soc China, 2009, 19, s470-5. doi:10.1016/S1003-6326 (10) 60091-X.
  40. Costa, M. L., Almeida, S. F. M. d. and Rezende, M. C., "The Influence of Porosity on the Interlaminar Shear Strength of Carbon/Epoxy and Carbon/Bismaleimide Fabric Laminates", Compos Sci Technol., 2001, 61, pp.2101-8. doi:10.1016/S0266-3538 (01) 00157-9.
  41. Guo, Z., Liu, L., Zhang, B. and Du, S., "Critical Void Content for Thermoset Composite Laminates", J Compos Mater., 2009. doi:10.1177 /0021998306065289.
  42. Podymova, N. B., Karabutov, A. A., Kobeleva, L. I. Chernyshova, T. A., "Laser Optoacoustic Method of Local Porosity Measurement of Particles Reinforced Composites", J Phys Conf., Ser 2011, 278, 12038. doi:10.1088/1742-6596/278/1/012038.
  43. Jeong, H. and Hsu, D. K., "Experimental Analysis Ultrasonic Attenuation in Carbon Composites", Ultrasonics, 1995, 33, pp.195-203.
  44. Martin, B., "Ultrasonic Attenuation Due to Voids in Fibre-reinforced Plastics", NDT Int 1976, pp.242-6.
  45. Measurement Not. Handbook Composite Materials Handbook Volume 2, Polymer Matrix Composites, 2002, 2.
  46. Chamis, C. C., Handler, L. M. and Manderscheid., J. Composite Nanomechanics, A Mechanistic Properties Prediction, 2007.
  47. Costa, M. L., "Strength of Hygrothermally Conditioned Polymer Composites with Voids", J Compos Mater., 2005, 39, pp.1943-61. doi:10.1177/0021998305051807.
  48. Koushya, H., Alavi-Soltani, S., Minaie, B. and Violette, M., "Effects of Variation in Autoclave Pressure, Temperature, and Vacuum-Application Time on Porosity and Mechanical Properties of a Carbon Fiber/Epoxy Composite", J Compos Mater., 2011, 46, pp.1985-2004. doi:10.1177/0021998311429618.
  49. Boubakri, A., Elleuch, K., Guermazi, N. and Ayedi, H. F., "Investigations on Hygrothermal Aging of tHermoplastic Polyurethane Material", Mater Des., 2009, 30, pp.3958-65. doi:10.1016/j.matdes.2009.05.038.
  50. Huang, G. and Sun, H., "Effect of Water Absorption on the Mechanical Properties of Glass/Polyester Composites", Mater Des., 2007, 28, pp.1647-50. doi:10.1016/j.matdes.2006.03.014.
  51. Balasubramaniam, K., Alluri, S., Nidumolu, P., mantena, P.R., Vaughan, J. G. and Kowsika, M., "Ultrasonic and Vibration Methods for the Characterization of Pultruded Composites", Compos Eng., 1995, 5, pp.1433-51. doi:10.1016/0961-9526(95)00074-W.
  52. Daniel, I. M. and Wooh, S. C., "Ink Characterization of Porosity in Thick", 1991, c:1607-14.
  53. Daniel, I. M., Wooh, S. C. and Komsky, I., "Quantitative Porosity Characterization of Composite Materials by Means of Ultrasonic Attenuation Measurements", J. Nondestruct Eval., 1992, 11, pp.1-8. doi:10.1007/BF00566012.
  54. Mouritz, A. P., "Ultrasonic and Interlaminar Properties of Highly Porous Composites", . J Compos Mater., 2000, 34, pp.218-39. doi:10.1177/002199830003400303.
  55. Hasiotis, T., Badogiannis, E. and Tsouvalis, N. G., "Application of Ultrasonic C-Scan Techniques for Tracing Defects in Laminated Composite Materials", Strojniski Vestn - J Mech Eng., 2011, 2011, pp.192- 203. doi:10.5545/sv-jme.2010.170.
  56. BS EN 2564:1998 - Carbon Fibre Laminates. Determination of the Fibre, Resin and Void Contents, n.d. http://shop.bsigroup.com/ProductDetail/pid=0000 00000001484696 (accessed August 26, 2014).