Main Article Content

Abstract

In this paper, our objective is to use the navigation signals (pseudorange and carrier phase measurements) from GPS to kinematically estimate the absolute position of a low Earth orbit satellite and its receiver clock biases. GPS observables can estimate the precise position of a satellite in near real time. The GPS satellite navigation file is downloaded from Scripps Orbit and Permanent Array Centre (SOPAC) website for starting epoch of 01-01-2016 00:00 UT. The observables are then generated for a Low-Earth-Orbit (LEO) satellite at an altitude of 901.4 km. The absolute position is estimated using pseudorange measurements. The accuracies obtained are (5.68 8.04 6.17) m in ECEF frame. This estimated absolute position is then smoothened with the time-differenced carrier phase measurements. The Kalman filter gains are computed in near real time. The smoothened accuracies obtained are (2.24 2.60 2.6982) m in ECEF frame, thus showing improved estimated absolute position accuracy.

Keywords

no Keywords

Article Details

How to Cite
Ganjoo, I., & Kumar, V. K. (2023). Smoothened Absolute Kinematic Position Estimation Of Leo Satellite Using Gps Observables. Journal of Aerospace Sciences and Technologies, 69(3), 373–379. https://doi.org/10.61653/joast.v69i3.2017.279

References

  1. Yunck, T.P. and Wu, S.C., "Non-dynamic Decimeter Tracking of Earth Satellites Using the Global Positioning System", Presented at the AIAA 24th Aerospace Science Meeting, Reno, Nevada, January 1986. Paper No.:AIAA-86-0404. doi:10.2514/6.1986-404.
  2. Yunck, T.P., "Orbit Determination", in Global Positioning System: Theory and Applications, Volume II: AIAA-Progress in Astronautics and Aeronautics Series, Vol.164,1996, pp.559-592. doi:10.2514/5.9781600866395.0559.0592.
  3. Gupta, R., Rathanakara, S.C., Jain, A.K. and Ganeshan, A.S., "IRS P4 Orbit Determination Experience with GPS Measurements", 52nd International Astronautical Congress, 01-05 October 2001, Toulouse France, IAF-01-A.06.02.
  4. Montenbruck, O., Takuji Ebinuma, E., Glenn Lightsey and Leung, S., "A Real-time Kinematic GPS Sensor for Spacecraft Relative Navigation", Aerospace Science and Technology, 6, 2002, pp.435-449. doi:10.1016/S1270-9638(02)01185-9.
  5. Leung, S. and Montenbruck, O., "Real-Time Navigation of Formation-Flying Spacecraft Using Global- Positioning-System Measurements", Journal of Guidance, Control, and Dynamics, Vol.2, No.6, November- December 2004, pp.226-235. doi: 10.2514/1.747.
  6. Vinod Kumar., Hablani Hari, B. and Pandiyan, R., "Kinematic Navigation of Geostationary Satellites Formation Using Indian Regional Navigation Satellites Observables", Journal of Guidance, Control, and Dynamics, Vol.38, Special Section on Astrodynamics, Space Navigation and Guidance, Optimal Estimation, and Celestial Mechanics, Issue 9, September 2015, pp.1856-1864. doi:http://arc.aiaa.org/doi/abs/10.2514/1.G000864
  7. Vinod Kumar, Hablani, H. B. and Pandiyan, R., "Precise Absolute and Relative Kinematic Positioning of Geostationary Satellites in Formation Using IRNSS", International Conference on Navigation and Communication, NAVCOM 2012, December 2012, Hyderabad, India.
  8. Vinod Kumar, Hablani, H. B. and Pandiyan, R., "Smoothed Real-Time Navigation of Geostationary Satellites in Formation using Regional Navigation Satellites Differential Carrier Phase Measurements", AIAA Guidance, Navigation and Control (GNC) Conference, August 19-22, 2013, Boston, MA. Paper No.: AIAA 2013-4965. doi: 10.2514/6.2013-4965.
  9. Misra, P. and Enge, P., "Global Positioning System, Signals, Measurements and Performance", Ganga- Jamuna Press, 2001.
  10. Robert, G., Brown., Patrick, Y. C. and Hwang., "Introduction to Random Signals and Applied Kalman Filtering", 4th Edition, John Wiley and Sons, Inc, 2012.

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.