Main Article Content

Abstract

The main focus of this paper is to compute the flowfield and assess the aerodynamic drag of Space Recovery Experiment (SRE) modules at freestream Mach 6 at zero angle of incidence. Time-dependent Compressible axisymmetric Navier-Stokes equations are numerically simulated using a finite volume discretization method with a three-stage Runge-Kutta time-stepping scheme. The computed shock stand-off distance, pressure ratio across normal shock and stagnation point heat flux are showing satisfactory results with the analytical solutions.Available wind tunnel data such as Schlieren images, oil flow pictures and fore-body aerodynamic drag are compared with numerical results.Influence of various ramp angles of the SRE modules on surface pressure, flow separation, skin friction coefficient, wall heat flux and fore and base aerodynamic drag coefficients are investigated using present numerical data.

Keywords

CFD, Compressible Flow, Reentry Module, Shock Wave, Hypersonic Flow, Boundary Layer, Base Flow

Article Details

How to Cite
Mehta, R. C. (2023). Aerothermodynamic Analysis of Space Recovery Experiment Capsule at Mach 6. Journal of Aerospace Sciences and Technologies, 74(3), 172–181. https://doi.org/10.61653/joast.v74i3.2022.37

References

  1. Truitt, R. W., Hypersonic Aerodynamic, Ronald Press, New York, USA, 1959. 2. Hayes, W. D. and Probstein, R. F., Hypersonic Flow Theory, Academic Press, New York, USA, 1959.
  2. Lamb, J. P. and Oberkampf, W. L., "Review and Development of Base Pressure and Base Heating Correlations in Supersonic Flow", Journal of Spacecraft and Rockets, 32 (1), 1995, pp.8-23. https://doi.org/10.2514/3.26569
  3. Ottens, H. B. A., "Preliminary Computational Investigation on Aerodynamic Phenomena DELFT Aerospace Reentry Test Vehicle", Proceedings of the 4th European Symposium on Aerothermodynamics for Allocations, ESA Capua, Italy, 15-18, October 2001, pp.207-213
  4. Viviani, A. and Pezzella, G., "Computational Flowfield Analysis Over a Blunt-body Reentry Vehicle", Journal of Spacecraft and Rockets, 47 (2), 2010, pp.258-270.
  5. Liever, P. A., Habchi, S. D., Burnell, S. I. and Lingard, J. S., "Computational Fluid Dynamics Prediction of the Beagle 2 Aerodynamic Data Base", Journal of Spacecraft and Rockets, 40 (5), 2003, pp.632-638. https://doi.org/10.2514/2.691
  6. Murphy, K.J., Bibb, K. L., Brauckmann, G. J., Rhode, M. N., Owens, B., Chan, D. T., Walker, E. L., Bell, J. H. and Wilson, T. M., "Orion Crew Module Aerodynamic Testing", Paper 2011-3502, 2011.
  7. Zhenmiz, Z., Yunliancy, D., Yi, L. and Tieliang, Z., "Shape Optimization Design Method for the Conceptual Design of Reentry Vehicles", Acta Astonautica Sincia, 32 (11), 2011, pp.1971-1979.
  8. Weiland, C., "Aerodynamic Data of Space Vehicles", Springer-Verlag, Berlin Heidelberg, Germany, 2014.
  9. Viviani, A. and Pezzella, G., "Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles", Springer International Publishing A. G., Switzerland, 2015.
  10. Stremel, P. K., McMullen, M. S. and Garcia, J. A., "Computational Aerodynamic Simulations of the Orion Command Module", AIAA 2011-3503, 2011.
  11. Hornung, H., Martinez Schramm, J. and Hannemann, K., "Hypersonic Flow Over Spherically Blunted Cone Modules for Atmospheric Entry. Part 1. The Sharp Cone and the Sphere", Journal of Fluid Mechanics, 871, 2019, pp.1097-1116. doi:10.1017/jfm.2019.342
  12. Desikan, S.L.N., Patil, M. N. and Subramanian, S., "Understanding of Flow Features Over a Typical Crew Module at Mach 4", The Aeronautical Journal, 119, 2015, pp.727-746. https://doi.org/ 10.1017/S0001924000010794
  13. Hu. Y., Huang, H. and Zhang, Z., "Numerical Simulation of a Hypersonic Flow Past a Blunt Body", International Journal of Numerical Methods for Heat and Fluid Flow, 27 (6), 2017, pp.1351-1364. https://doi.org/10.1108/HFF-05-2016-0187
  14. Mehta, R. C., "Computation of Base Pressure Based on to Fill-up the Growing Space Applied to Reentry Capsules", AIAA Paper 2020-2711, 2020.
  15. Baum, E., King, H. H. and Denison, M. R., "Recent Studies of the Laminar Base Flow Region", AIAA Journal, 2 (9), 1964, pp.1527-1534. https://doi.org/10.2514/3.55084
  16. Grasso, F. and Pettinelli, C., "Analysis of Laminar Near-wake Hypersonic Flows", Journal of Spacecraft and Rockets, 32 (6), 1995, pp.970-980. https://doi.org/10.2514/3.26717.
  17. Gokaltun, S., Skudarnov, P. V., Lin, C. X. and Hugh Thornburg., "Verification and Validation Studies for Laminar Hypersonic Flow Over a Blunted Cone and a Flat Plate", ASME Paper No: FEDSM 2006-98369, 2006, pp.351-356. https://doi.org/10.1115/FEDSM2006-98369
  18. Savino, R. and Paterna, D., "Blunted Coneflare in Hypersonic Flow", Computer and Fluids, 34 (7), 2005, pp.859-875. https://doi.org/10.1016/j.compfluid.2004.05.012
  19. Jameson, A., Schmidt, W. and Turkel, E., "Numerical Solution of Euler Equations by Finite Volume Methods Using Runge-Kutta Time-stepping Scheme", AIAA Paper 81-1259, 1981.
  20. Mehta, R. C., "Multi-Block Structured Grid Generation for Computational Fluid Dynamics", Scholar Journal of Engineering and Technology, 5(8), 2017, pp.387-219.
  21. Mehta, R. C., "Computations of Flowfield Over Reentry Modules at High Speed", in Computational Simulations and Applications, Edited by J. Zhu, In- Tech Press, Croatia, 2011, pp.347-372.
  22. Mehta, R. C., Numerical Simulation of Base Pressure and Drag of a Space Reentry Capsules at High Speed", Edited by Gluseppe Pizzella of Hypersonic Vehicle, INTECH Open, Croatia, 2019.
  23. Subramanian, S., Kurup, M. K. A., Kalimuthu, R. and Raveendran, P. G., "Wind Tunnel Results of SRE Configurations at Mach 5", Vikram Sarabhai Space Centre, Aerothermal Test Facilities, Trivandrum, VSSC/ATF/TM-SRE/039/2001, 2001.
  24. Liepmann, H. W. and Roshko, A., "Elements of Gas Dynamics", 1st South Asian Edition, Dover Publications Inc, New Delhi, India, 2007.
  25. Probstein, R. F., "Inviscid Flow in the Stagnation Region of Very Blunt-nosed Bodies at Hypersonic Flight Speeds", WADC TN 56-395, September 1956.
  26. Fay, J. A. and Riddell, F. R., "Theory of Stagnation Point Heat Transfer in Dissociated Air", Journal of Aeronautical Sciences, 25, 1958, pp. 3-85.
  27. White, F. M., "Viscous Fluid Flow", Second Edition, McGraw Hill International Edition, Singapore, 1991.