Main Article Content

Abstract

The loss factor of a structure can be significantly improved through constrained damping treatment using viscoelastic layer. Even after introducing the constrained damping layer, the effective loss factor achieved is seen to be far less than the loss factor of the basic viscoelastic material. Methods to improve the loss factor of the aerospace structures further are of great practical importance. In this work, two methods are investigated, one is extending the damping treatment to the boundaries and the other is related to the use of stand-offs for the viscoelastic layers. It is shown through experiments and numerical simulation that significant increase in the loss factor can be achieved by extending the damping treatment into the interfaces, especially in the second bending mode of vibration. Stand-offs having good extensional modulus can improve the loss factor of the bending modes further, though its shear modulus does not play any significant role.

Keywords

Aerospace Structure, Constrained Damping, Loss Factor, Passive Control, Standoffs, Viscoelastic Material

Article Details

Author Biography

Kartik Venkatraman, Department of Aerospace Engineering Indian Institute of Science Bangalore-560 012



How to Cite
K. Joseph, T., Renji, K., & Venkatraman, K. (2023). On Improving the Loss Factors of Aerospace Structures Having Constrained Layer Damping Treatment. Journal of Aerospace Sciences and Technologies, 74(3), 182–194. https://doi.org/10.61653/joast.v74i3.2022.38

References

  1. Kerwin, E.M., "Damping of Flexural Waves by a Constrained Viscoelastic Layer", J. Acoust. Soc. Am., 31 (1), 1959, pp.952-957. https://dx.doi.org/10.1121/1.1907821
  2. Ungar, E.E., "Damping of Panels". In L. Beranek, Editor, Shock and Vibration Handbook, McGraw- Hill, New York, 1971.
  3. Taranto, R.A.D. and Balsingame, W., "Composite Damping of Vibrating Sandwich Beams", Journal of Engineering for Industry, Transactions ASME, 89 (4), 1967, pp.633-638. https://dx.doi.org/10.1115/1.3610124
  4. Cremer, L., Heckl, M. and Ungar, E.E., Structure- Borne Sound, Springer, 1973.
  5. Yang Liu., Zhanqiang Liu., Qinghua Song and Bing Wang., "Development of Constrained Layer Damping Toolholder to Improve Chatter Stability in End Milling", International Journal of Mechanical Sciences, 117, 2016, pp.299-308. https://doi.org/10.1016/j.ijmecsci.2016.09.003
  6. Yi-Chu Hsu and Shen, I.Y., "Constrained Layer Damping Treatments for Microstructures", J. Vib. Acoust.,124 (4), 2002, pp.612-616. https://doi.org/10.1115/1.1500743
  7. Rohan V. Pai., Arnold Lumsdaine and Matthew Parsons., "Design and Fabrication of Optimal Constrained Layer Damping Topologies", Proceedings of Smart Structures and Materials, San Diego, United States, 2004. https://doi.org/10.1117/12.540065 8. Ali El Hafidi.,Cintya De La Pea Herrero and Bruno Martin., "Optimization of Passive Constrained Layer Damping (PCLD) Treatments for Vibration Reduction", Journal of Vibro Engineering, 17 (6), 2015, pp.3035-3045.
  8. Thomas K. Joseph., Renji, K. and Kartik Venkatraman., "On the Region for the Application of Passive Damping Treatment and Loss Factor Enhancement", Int. J. of Acoustics and Vibration, 24 (4), 2019, pp.693-700. https://doi.org/10.20855/ijav.2019.24.41432
  9. Qingqing Wu and Minqing Wang., "Damping Analysis of Plates with Multiple Constrained Layer Damping Treatments", Int. J. of Engineering Research and Technology (IJERT), 7 (7), 2018, pp.693-700. https://dx.doi.org/10.17577/IJERTV7180701
  10. Satyajit Panda and Ambesh Kumar., "A Design of Active Constrained Layer Damping Treatment for Vibration Control of Circular Cylindrical Shell Structure", Journal of Vibration and Control, 24 (24), 2018, pp.5811-5841. https://doi.org/10.1177/1077546316670071
  11. Mantena, P.R., Gibsor, R.F. and Hwang, S.J., "Optimal Constrained Viscoelastic Tape Lengths for Maximizing Damping in Laminated Composites", AIAA Journal, 29 (10), 1991, pp.1678-1685. https://doi.org/10.2514/3.10790
  12. Whitter, J.S., "The Effect of Configurational Additions Using Viscoelastic Interfaces on the Damping of a Cantilever Beam", WADC TR 58-568, Wright Air Development Center, 1959.
  13. Hujare, P. and Sahasrabudhe, A., "Enhancement of Damping Performance of CLD Treatment Using Segmentation Method", Proceedings of SAE Conference, 2017. https://doi.org/10.4271/2017-01-1882
  14. Aumjaud, P., Smith, C. and Evans, K. A., "Novel Viscoelastic Damping Treatment for Honeycomb Sandwich Structures", Composite Structures, 119, 2015, pp.322-332.. https://doi.org/10.1016/j.compstruct.2014.09.005
  15. Johnson, C.D. and Kienholz, D., "Finite Element Prediction of Damping in Beams with Constrained Viscoelastic Layers", The Shock and Vibration Bulletin, 51, 1981, pp.71-82.
  16. Lazan, B.J., Metherell, A.F. and Sokol, O., "Multiple- Band Surface Treatment for High Damping", Technical Report, US Air Force Report, AFMLTR65- 269, 1965, Washington, D.C, USA.
  17. Huang, P.Y.H., Reinhall, P.G., Shen, I.Y. and Kumar, V., "Use of Microcellular Foam Materials in Constrained Layer Damping Treatments", Cellular Polymers 20 (2), 2001, pp.101-114. https://doi.org/10.1177/026248930102000202
  18. Mallik, A.K., "Principles of Vibration Control", East-West Press, New Delhi, 1990.
  19. Mead, D.J., "The Measurement of the Loss Factors of Beams and Plates with Constrained and Unconstrained Damping Layers: A Critical Assessment", J. Sound Vibration, 300 (3-5), 2007, pp.744-762. https://doi.org/10.1016/j.jsv.2006.08.023
  20. Hujare, P.P. and Sahasrabudhe, A.D., "Experimental Investigation of Damping Performance of Viscoelastic Material Using Constrained Layer Damping Treatment", Procedia Material Science 5, 2014, pp.726-733. https://doi.org/10.1016/j.mspro.2014.07.321
  21. Ross, D., Ungar, E.E. and Kerwin, E.M., "Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminate", Structural Damping, ASME, New York, 1959.
  22. Ioaninides, E. and Grootenhuis, P. A., "Finite Element Analysis of the Harmonic Response of Damped Three Layer Plates", J. Sound Vibration, 67(2), 1979, pp.203-218. https://doi.org/10.1016/0022-460X(79)90484-X
  23. Lu, Y.P. and Everstine, G.C., "More on Finite Element Modeling of Damped Composite Systems", J. Sound Vibration ,69 (2), 1980, pp.199-205. https://doi.org/10.1016/0022-460X(80)90606-9
  24. Johnson, C.D. and Kienholz, D.A., "Finite Element Prediction of Damping in Structures with Constrained Viscoelastic Layers", AIAA Journal, 20 (9), 1982, pp.1284-1290. https://doi.org/10.2514/3.51190
  25. Moreira, R. and Rodrigues, J.D., "Constrained Damping Layer Treatments: Finite Element Modeling", J. Vibration Control, 10 (4), 2004, pp.575-595. https://doi.org/10.1177/1077546304039060
  26. Ma, B.A. and He, J. F., "A Finite Element Analysis of Viscoelastically Damped Sandwich Plates", J. Sound Vibation, 152 (1), 1992, pp.107-123. https://doi.org/10.1016/0022-460X(92)90068-9
  27. Yakai Xu., Weiguo Gao.,Yuhan Yu., Dawei Zhang., Xiangsong Zhao., Yanling Tian and Huaying Cun., "Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method", Shock and Vibration, 1-13, 2017. https://doi.org/10.1155/2017/2736545
  28. Yakai Xu.,Weiguo Gao.,Yuhan Yu., Dawei Zhang., Xiangsong Zhao., Yanling Tian and Huaying Cun., "Simplification of fInite Element Modeling for Plates Structures with Constrained Layer Damping by Using Single-layer Equivalent Material Properties, Composites Part-B, 157, 2019, pp.283-288. https://doi.org/10.1016/j.compositesb.2018.09.010
  29. Navin Kumar and Singh, S.P., "Experimental Study on Vibration and Damping of Curved Panel Treated with Constrained Viscoelastic Layer", Composite Structures, 92 (2), 2010, pp.233-243. https://doi.org/10.1016/j.compstruct.2009.07.011
  30. Ross, D., Ungar, E.E. and Kerwin, E.M., "Damping of Plate Flexural Vibrations by Means of Viscoelastic Laminae", Ruzicka, J.E, Editor, Structural Damping, 1960, Pergamon Press, Oxford.