Main Article Content

Abstract

In the present study a micromechanics based damage mesomodel for the initiation and propagation of fibre breaking has been developed for unidirectional continuous fibrous composites under quasi-static loading. For the micromechanical analysis, an RVE which contains a right circular cylindrical fibre in a cubical matrix along with a thin interphase/interface between fibre and matrix is considered. The state of micro stress and / or micro strain in fibre, matrix and interphase is found from two micromechanical approaches: Hill’s Concentration Factors and Homogenization. A brittle type fracture criterion is used for fibre breaking. The fibre breaking damage initiation and evolution at lamina level is presented using the concepts of progressive damage mesomodel. The model is tested for (carbon) / BSL914C epoxy and Silenka E-Glass 1200tex/MY750/HY917/DT063 epoxy materials used in World Wide Failure Exercise (WWFE). The model is validated for fibre breaking mechanism by loading a unidirectional lamina in both axial tension and compression. The preliminary results obtained for fibre breaking damage initiation and propagation for lamina under longitudinal tension are in good agreement with the experimental results reported in WWFE.

Keywords

Carbon; Glass fibres; Strength; Damage mechanics; Fibre breaking; Hill’s Concentration Factors, Homogenization.

Article Details

How to Cite
Mohite, P., Jain, A., & Upadhyay , C. (2023). Micromechanics Based Fibre Breaking Damage Mesomodel for Unidirectional Fibrous Laminated Composites. Journal of Aerospace Sciences and Technologies, 67(4), 500–513. https://doi.org/10.61653/joast.v67i4.2015.405

References

  1. Herakovich, C.T., "Mechanics of Fibrous Composites", John Wiley and Sons Publications Inc, USA, 1998.
  2. Tsai, S.W. and Wu, E.M., "A General Theory of Strength for Anisotropic Materials", Journal of Composite Materials, Vol.5, 1971, pp.55-80.
  3. Kaddour, A.S., Hinton, M.J. and Soden, P.D., "A Comparison of the Predictive Capabilities of Current Failure Theories of Composite Laminates", Compos. Sci. Technol., Vol.58, No.7, 1998, pp.1225-1254.
  4. Kaddour, A.S., Hinton, M.J. and Soden, P.D., "A Comparison of the Predictive Capabilities of Current Failure Theories of Composite Laminates: Additional Contributions", Compos. Sci. Technol., Vol.64, 2004, pp.449-476.
  5. Soden, P.D., Hinton, M.J. and Kaddour, A.S., "Lamina Properties, Lay-up Configurations and Loading Conditions for a Range of Fibre-reinforced Composite Laminates", Compos. Sci. Technol., Vol.58, No.7, 1998, pp.1011-1022.
  6. Hollister, S.J. and Kikuchi, N., "A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites", Comput. Mech., Vol.10, 1992, pp.73-95.
  7. Suquet, P., "Elements of Homogenization Theory for Inelastic Solid Mechanics", Sanchez-Palencia, E. Zaoui, A., (eds), Homogenization Techniques for Composite Media, Springer, New York, 1987, pp.194-278.
  8. Fish, J., Yu, Q. and Shek, K., "Computational Damage Mechanics for Composite Materials Based on Mathematical Homogenization", Int. J. Numer. Meth. Engg., Vol.45, 1999, pp.1657-1679.
  9. Fish, J. and Yu, Q., "Multiscale Damage Modeling for Composite Materials Theory and Computational Framework", Int. J. Numer. Meth. Engg., Vol.52, 2001, pp.161-191.
  10. Reifsnider, K.L. and Gao, Z., "A Micromechanics Model for Composites Under Fatigue Loading", Int. J. Fatigue, Vol.13, 1991, pp.149-156.
  11. Ghosh, S. and Raghavan, P., "Concurrent Multiscale Analysis of Elastic Composites by a Multi Level Computational Model", Comput. Methods Appl. Mech. Engg., Vol.193, 2004, pp.497-538.
  12. Babuska, I., Andersson, B., Smith, P.J. and Levin, K., "Damage Analysis of Fiber Composites Part I: Statistical Analysis on Fiber Scale", Comput. Methods Appl. Mech. Engg., Vol.172, 1999, pp.27-77.
  13. Beyerlein, I.J. and Phoenix, S.L., "Statistics of Fracture for an Elastic Notched Composite Lamina Containing Weibull Fibers - Part 1: Features from Monte Carlo Simulation", Engineering Fracture Mechanics, Vol.57, 1997, pp.241-265.
  14. Wang, C.H., "Progressive Multi-scale Modelling of Composite Laminates", Soutis, C, Beaumont, P.W.R., (eds). "Multiscale Modelling of Composite Material Systems: The Art of Predictive Damage Modelling", . Woodhead Publishing Limited, Cambridge, U.K, 2005, pp.259-277.
  15. Barbero, E.J., Abdelal, G.F. and Caceres, A., "A Micromechanics Approach for Damage Modeling of Polymer Matrix Composites", Composite Structures, Vol.67, 2005, pp.427-436.
  16. Mishnaevsky, L, Jr. and Brndsted, P., "Micromechanical Modeling of Damage and Fracture of Unidirectional Fiber Reinforced Composites: A Review", Computational Material Science, Vol.44, 2009, pp.1351-1359.
  17. Ladevèze, P. and Le Dantec, E., "Damage Modelling of the Elementary Ply for Laminated Composites", Composite Science and Technology, Vol.43, 1992, pp.257-267.
  18. Ladevèze, P., "A Damage Computational Method for Composite Structures", Computers and Structures, Vol.44, No.1/2, 1992, pp.79-87
  19. Daudeville, L. and Ladevèze, P., "A Damage Mechanics tool for Laminate Delamination", Composite Structures, Vol.25, 1993, pp.547-555.
  20. Ladevèze, P., Allix, O., Gornet, L., Lévêque, D. and Perret L., "A Computational Damage Mechanics Approach for Laminates: Identification and Comparison with Experimental Results", Studies in Applied Mechanics, Vol.46, 1998, pp.481-500.
  21. Ladevèze, P., Allix O., Deü, J-F. and Lévèque, D., "A Mesomodel for Localisation and Damage Computation in Laminates", Comput. Methods Appl. Mech. Engg., Vol.183, 2000, pp.105-122.
  22. Mishnaevsky, L. Jr. and Brøndsted, P., "Micromechanisms of Damage in Unidirectional Fiber Reinforces Composites: 3D Computational Analysis", Compos. Sci. Technol., Vol.69, 2009, pp.1036- 1044.
  23. Hill, R., "Theory of Mechanical Properties of Fibre Strengthened Materials: I. Elastic Behaviour", J. Mech. Phys. Solids., Vol.12, 1964, pp.199-212. 24. Cech V., Palesch, E. and Lukes, J., "The glass Fiber- Polymer Matrix Interface/Interphase Characterized by Nanoscale Imaging Techniques", Compos. Sci. Technol., Vol.83, 2013, pp.22-26.
  24. Drzal L.T., Rich, M.J., and Lloyd, P.F., "Adhesion of Graphite Fibers to Epoxy Matrices: I. The Role of Fiber Surface Treatment", J. Adhes., Vol.16, 1983, p.130.
  25. Jesson, D.A. and Watts, J.F., "The Interface and Interphase in Polymer Matrix Composites: Effect on Mechanical Properties and Methods for Identification", Polymer Rev., Vol.52, 2012, pp.32154.
  26. Chamis, C.C. and Sendeckyj, G.P., "Critique on Theories Predicting Thermoelastic Properties of Fibrous Composites", J. Compos. Mater., Vol.2(3), 1968, pp.332-358.
  27. Mohite, P.M., "Composite Material and Structures", NPTEL Course, http://nptel.ac.in/courses/index. php?subjectId=101104010.
  28. Nithesh, P., "A Homogenization Based Matrix Cracking Modeling in Unidirectional Fibrous Composites", M. Tech. Thesis, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, India.