Main Article Content

Abstract

An approach based on neural partial differentiation is suggested, to overcome the numerical problems faced by classical methods, for the parameter estimation of an aerodynamically unstable aircraft. Theoretical analysis of the neural modeling, the parameter estimation process, and the nature of the estimates pertaining to unstable aircraft dynamics using the neural partial differential method, are discussed. Equation for the relative standard deviation, which is equivalent to the Cramer-Rao bound in the method like output error approach, is derived using the neural partial differential method and verified through numerical simulation. The aerodynamic derivatives are derived for the simulated and real longitudinal flight data of an unstable aircraft, and the estimates obtained using the neural partial differentiation are compared with the classical methods such as the equation error and the output error methods. The parameter estimates from the simulated noisy data are also presented to assess and support the theoretical developments presented in this paper. The theoretical analysis and the results presented in this paper make the neural partial differential approach more reliable and widely applicable.

Keywords

neural network, neural partial differentiation, unstable aircraft.

Article Details

How to Cite
Kuttieri , R., & Sinha , M. (2023). Unstable Aircraft Parameter Estimation Using Neural Partial Differentiation. Journal of Aerospace Sciences and Technologies, 64(3), 201–216. https://doi.org/10.61653/joast.v64i3.2012.465

References

  1. Jategaonkar, R. V., "Flight Vehicle System Identification: A Time Domain Methodology, Progress in Astronautics and Aeronautics", 1st ed., Vol.216, p. 9, AIAA, Reston, VA, 2006.
  2. Hamel, P. G. and Jategaonkar, R. V., "Evolution of Flight Vehicle System Identification", Journal of Aircraft, Vol. 33, No.1, 1996, pp. 9-28.
  3. Iliff, K. W., "Aircraft Parameter Estimation: AIAA Dryden Lecture in Research for 1987", NASA Technical Memorandum-88281, 1987.
  4. Jategaonkar, R. V. and Thielecke, F., "Evaluation of Parameter Estimation Methods for Unstable Aircraft", Journal of Aircraft, Vol. 31, No. 3, 1994, pp. 51-519.
  5. Hornik, K., Stinchcombe, M. and White, H., "Multilayer Feedforward Networks are Universal Approximators", Neural Networks, Vol.2, 1989, pp. 359-366.
  6. Hess, R. A., "On the Use of Back Propagation with Feedforward Neural Networks for Aerodynamic Estimation Problem", AIAA Paper 93-3638, Aug. 1993.
  7. Youseff, H. M., "Estimation of Aerodynamic Coefficients using Neural Networks", AIAA Paper 93- 3639, Aug. 1993.
  8. Linse, D. J. and Stengel, R. F., "Identification of Aerodynamic Coefficients using Computational Neural Networks", Journal of Guidance, Control and Dynamics, Vol.16, No. 6, 1993, pp.1018-1025.
  9. Basappa, K. and Jategaonkar, R. V., "Aspects of Feedforward Neural Network Modeling and its Application to Lateral-Directional Flight Data", DLRIB 111-95/30, Braunschweig, Germany, September 1995.
  10. Feteih, S. and Breckenridge, G., "Neural Network Based Estimator for a Maneuvering Aircraft", Proceedings of American Control Conference, Feb. 1993, pp. 1380-1384.
  11. Raol, J. R., "Neural Network Based Parameter Estimation of Unstable Aerospace Dynamic Systems", IEE Proceedings-Control Theory Appl.,Vol.141, No.6, 1994, pp. 385-388.
  12. Raisinghani, S. C., Ghosh, A. K. and Kalra, P. K., "Two New Techniques for Parameter Estimation using Neural Networks", The Aeronautical Journal, Vol. 102, No. 1011, 1998, pp. 25-29.
  13. Raisinghani, S. C., Ghosh, A. K. and Khubchandani, S., "Estimation of Aircraft Lateral-Directional Parameters Using Neural Networks", Journal of Aircraft, Vol. 35, No. 6, 1998, pp. 876-881.
  14. Singh, S. and Ghosh., A. K., "Estimation of Lateral- Directional Parameters Using Neural Network based Modified Delta Method", The Aeronautical Journal, October 2007, pp. 659-667.
  15. Peyada, N. K. and Ghosh, A. K., "Aircraft Parameter Estimation Using a New Filtering Technique Based upon a Neural Network and Gauss-Newton Method", The Aeronautical Journal, Vol. 113, No. 1142, 2009, pp. 243-252.
  16. Kumar, R., Ganguli, R. and Omkar, S. N., "Rotorcraft Parameter Estimation Using Radial Basis Function Neural Network", Applied Mathematics and Computation, 216, 2010, pp. 584-597.
  17. Jain, A. K., Mao, J. and Mohiuddin, K. M., "Artificial Neural Networks: A Tutorial", IEEE Computer Society, March 1996, pp. 31-42.
  18. Das, S., Kuttieri, R. A., Sinha, M. and Jategaonkar, R. V., "Neural Partial Differential Method for Extracting Aerodynamic Derivatives from Flight Data", AIAA Journal of Guidance, Control, and Dynamics, AIAA, Vol. 33, No. 2, 2010, pp. 376-384.
  19. Sinha, M., Kumar, K. and Kalra, P. K., "Some New Neural Network Architecture with Improved Learning Schemes", Soft Computing, Vol. 4, No. 4, 2000, pp. 214-223.
  20. Moller, M. F., "A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning", Neural Networks, Vol. 6, 1993, pp. 525-533.
  21. Plaetschke, E., Mulder, J. A. and Breeman, J. H., "Results of Beaver Aircraft Parameter Identification", DFVLR-FB 83-10, March 1983.