Main Article Content

Abstract

Here, the dynamic snap-through buckling characteristics of clamped functionally graded spherical caps suddenly exposed to a thermal field are studied using finite element procedure. The material properties are graded in the thickness direction. The temperature load corresponding to a sudden jump in the maximum average displacement in the time history of the shell structure is taken as the dynamic buckling temperature. Numerical study is carried out to highlight the influences of shell geometries and material gradient index on the critical buckling temperature.

Keywords

Functionally Graded, Dynamic Buckling, Spherical Shell, Thermal Load, Power Law Index, Nonlinear

Article Details

How to Cite
Sundararajan, N., & Ganapathi, M. (2023). On the Dynamic Snap-through Buckling of Functionally Graded Spherical Caps. Journal of Aerospace Sciences and Technologies, 59(3), 223–227. https://doi.org/10.61653/joast.v59i3.2007.719

References

  1. Koizumi, M., "FGM Activities in Japan", Composites
  2. Part B: Engineering, 28, 1997, pp. 1-4.
  3. Budiansky, B. and Roth R. S., "Axisymmetric Dynamic
  4. Buckling of Clamped Shallow Spherical
  5. Shells", NASA TND-510, 1962, pp. 597-609.
  6. Simitses, G. J., "Axisymmetric Dynamic Snap-
  7. Through Buckling of Shallow Spherical Caps",
  8. AIAA Journal, 5, 1967, pp.1019-1021.
  9. Haung, N. C., "Axisymmetric Dynamic Snap-
  10. Through of Elastic Clamped Shallow Shell", AIAA
  11. Journal, 7, 1969, pp. 215-220.
  12. Chao, C. C. and Lin, I. S., "Static and Dynamic
  13. Snap-Through of OrthotropicSpherical Caps", Composite
  14. Structures, 14, 1990, pp. 281-301.
  15. Ganapathi, M., Gupta, S. S. and Patel, B. P., "Nonlinear
  16. Asymmetric Dynamic Buckling of Isotropic/
  17. Laminated Orthotropic Spherical Caps."
  18. AIAA Journal, 41, 2003, pp. 1363-1369.
  19. Makino, A., Araki, N., Kitajima, H. and Ohashi,
  20. K.,"Transient Temperature Response of Functionally
  21. Gradient Material Subjected to Partial, Stepwise
  22. Heating", Transactions JSME, Part B, 60, 1994, pp.
  23. -4206.
  24. Obata, Y. and Noda, N.,"Steady Thermal Stresses in
  25. a Hollow Circular Cylinder and Hollow Sphere of a
  26. Functionally Gradient Material", Journal of Thermal
  27. Stresses, 17, 1994, pp. 471-487.
  28. Takezono, S., Tao, K., Inamura, E. and Inoue, M.,
  29. "Thermal Stress and Deformation in Functionally
  30. Graded Material Shells of Revolution Under Thermal
  31. Loading Due to Fluid", JSME International Series
  32. A: Mechanics and Material Engineering, 39,
  33. , pp. 573-581.
  34. Ng, T. Y., Lam, K. Y., Liew, K. M. and Reddy,
  35. J.N.,"Dynamic Stability Analysis of functionally
  36. Graded Cylindrical Shells Under Periodic Axial
  37. Loading", Int. J. of Solids and Structures, 38, 2001,
  38. pp. 1295-1309.
  39. Mori. T. and Tanaka. K., "Average Stress in Matrix
  40. and Average Elasticenergy of Materials with Misfitting
  41. Inclusions", Acta Metall., 21, 1973, pp. 571-
  42. Benveniste, Y., "A New Approach to the Application
  43. of Mori-Tanaka’s Theory in Composite Materials",
  44. Mechanics of Materials, 6, 1987, pp. 147-157.
  45. Kraus H., "Thin Elastic Shells", John Wiley, New
  46. York, 1967.
  47. Rajasekaran, S. and Murray, D. W., "Incremental
  48. Finite Element Matrices", ASCE Journal of Structures
  49. Division, 99, 197, pp. 2423-2438.
  50. Ganesan N. and Ravikiran Kadoli, "A Theoretical
  51. Analysis of Linear Thermoelastic Buckling of Composite
  52. Hemispherical Shells with a Cut-out at the
  53. Apex", Composite Structures, 68, 2005, pp. 87-
  54. Lanhe, Wu., "Thermal Buckling of a Simply Supported
  55. Moderately Thick Rectangular FGM Plate",
  56. Composite Structures, 64, 2004, pp. 211-218.

Most read articles by the same author(s)

1 2 > >>