Main Article Content

Abstract

This paper represents nonlinear analysis of rhombic sandwich plates with orthotropic core under uniform load. Banerjee’s hypothesis [1] involving a new form of energy expression in the total potential energy of the system has been employed. As a consequence the differential equation is decoupled keeping intact its nonlinear character. The aim of the present study is to analyze the nonlinear behaviour of rhombic sandwich plates with orthotropic core under uniform load for different skew angles. The results have been obtained both for movable and immovable edges from a single cubic equation. Numerical results (central deflection vs. load) have been computed and compared with known results for square sandwich plates only. Results for different skew angles are believed to be new.

Keywords

No keywords.

Article Details

How to Cite
Chand Chell, G., Mondal, S., & Bairagi, G. (2023). Large Deflection Analysis of Rhombic Sandwich Plates with Orthotropic Core. Journal of Aerospace Sciences and Technologies, 62(1), 76–82. https://doi.org/10.61653/joast.v62i1.2010.489

References

  1. Dutta, S. and Banerjee, B., Int. J. Nonlinear Mechanics, 1991, 26(34), pp.313-318.
  2. Chien Rean-Der and Chen Chun-Sheng., Thin- Walled Structure, 2006, 44(8), pp.852-860.
  3. Reissner, E., Journal of Aeronautical Science, 1948, 15, pp.435-440.
  4. Wang, C.T., "Principle and Application of Complementary Energy Method for Thin Homogeneous and Sandwich Plates and Shells with Finite Deflections", 1952, NACA Technical Note 2620, pp.1-34.
  5. Hoff, N.J., "Bending and Buckling of Rectangular Sandwich Plates", 1950, NACA Technical Note, 2225, pp.1-29.
  6. Eringen, A.C., "Bending and Buckling of Rectangular Sandwich Plates", Proceedings of 1st US National Congress Applied Mechanics, ASME, New York, 1951, pp.381-390.
  7. Kamiya, N., AIAA Journal, 1976, 14(2), pp.250- 253.
  8. Ray, A., Dutta, S. and Banerjee, B., Meccanica, 1993, 28, pp.327-332.
  9. Dumir, P.C., Acta Mech, 1988, 71, pp.233-244.
  10. Dumir, P.C. and Bhaskar, A., Comput Method Applied Mechanics and Engineering, 1988, 67, pp.111- 124.
  11. Civalek, O., International Journal Pressure Vessels and Piping, 2005, 82(6), pp.470-479.
  12. Shiau Le-Chung and Kuo Shih-Yao., Journal of Engineering Mechanics, 2004, 130(10), pp. 1160- 1167.
  13. Khare, R.K., Rode, V., Garg, A.K. and John, S.P., Journal of Sandwich Structural Materials, 2005, 7(4), pp.335-358.
  14. Mania Radoslaw., J of Composite Structures, 2005, 69(4), pp. 482-490.
  15. Achary, G.G.S. and Kapuria, S., J. Acta Mech, 2006, 184(1-4), pp.61-76.
  16. Yeh Jia-Yi and Chen Lien-Wen., Journal of Composite Structures, 2007, 78(3), pp.368-376.
  17. Wu Hui and Yu Huan-ran., Journal of Applied Mathematics and Mechanics, 2001, 22(9), pp.1019- 1027.
  18. Da Silva, L.S. and Hunt, G.W., Journal of Mechanics Based Design of Structures and Machines, 1990, 18(3), pp.353-372.
  19. Chakrabarti, A., Mukhopadhyay, B. and Bera, R.K., Journal of Solid and Structures, 2007, 44(16), pp.5412-5424.
  20. Dutta, S. and Banerjee, B., Journal of AIAA, 1992, 30(3), pp.845-847.
  21. Chell, G.C., Mondal, S. and Bairagi, G., Journal of Engineering and Materials Sciences, 2008, 15, pp.7- 13.
  22. Timoshenko and Woinowsky-Krieger., "Theory of Plates and Shells", McGraw-Hill, International Editions, Second Edition.
  23. Boria, S. and Forasassi, G., "Crash Analysis of an Impact Attenuator for Racing Car in Sandwich Material, 9th FISITA Student Congress, Munchen, Germany.

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 > >> 

You may also start an advanced similarity search for this article.